衡阳派盒市场营销有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何提高LFPAK封裝系列芯片的功率和密度

電子工程師 ? 來源:網絡整理 ? 作者:佚名 ? 2019-11-26 09:37 ? 次閱讀

汽車和工業應用都需要不斷提高功率密度。例如,為了提高安全性,新的汽車動力轉向設計現在要求雙冗余電路,這意味著要在相同空間內容納雙倍的元器件。再舉一個例子,在服務器群中,每平方米都要耗費一定成本,用戶通常每18個月要求相同電源封裝中的輸出功率翻倍。如果分立式半導體供應商要應對這一挑戰,不能僅專注于改進晶圓技術,還必須努力提升封裝性能。

總部位于荷蘭的安世半導體是分立器件、MOSFET器件、模擬和邏輯集成電路領域的領導者,該公司率先在-功率封裝(LFPAK無損封裝)內部采用了全銅夾片芯片貼裝技術,目的是實現多種技術優勢(電流能力、RDSon、熱特性等)。

專為提高功率密度設計的LFPAK封裝系列

LFPAK封裝系列用于提高功率密度。其主要特點是在封裝內部使用了全銅夾片,在外部使用了鷗翼引腳。安世半導體在2002年率先推出LFPAK56封裝 - 它是一款功率SO8封裝(5mm x 6mm),設計用于替代體積更大的DPAK封裝?,F在,該公司提供了一系列不同尺寸的封裝,包含單雙通道MOSFET配置,可涵蓋眾多不同應用。最近,安世半導體發布了LFPAK88,這是一款8mm x 8mm封裝,針對較高功率的應用而設計,可取代體積更大的D2PAK和D2PAK-7封裝。

圖1:LFPAK分立式MOSFET封裝系列

夾片粘合封裝與焊線封裝:功率密度優勢

LFPAK器件的體積小于老式D2PAK和D2PAK-7器件,同時實現了功率密度的明顯提升。

圖2:LFPAK88的占位面積小于D2PAK

上圖顯示了LFPAK88的相對占位面積大小,與D2PAK器件相比減小了60%;另外LFPAK88器件的高度更低,因而總體積減小了86%。

LFPAK88之所以能夠實現性能和功率密度的提升,是因為它采用了銅夾片封裝技術,取代了D2PAK和D2PAK7等封裝采用的老式焊線技術。

圖3:與使用焊線連接的D2PAK與使用銅夾片技術的LFPAK88

銅夾片技術的性能優勢包括:

1.電流(Amp)

? 焊線是一個制約因素,它決定了器件能夠處理的電流大小。在使用D2PAK封裝的情況下,使用的焊線的最大直徑為500μm(由于連接的T型柱尺寸)。

? 使用最新Trench 9超級結40V晶圓,安世半導體能夠放入D2PAK封裝的最大晶圓電流額定值為120A。但是,對于體積更小的LFPAK88封裝,由于不受焊線制約,安世半導體目前能夠放入該封裝的最大晶圓電流額定值為425A。隨著公司以后發布更大晶圓的產品,此電流額定值還會提高。[注:這些值來自于測量而并非理論]

2.RDS(on) [以m?為單位]

? 在D2PAK中使用的三條500μm直徑的焊線增加了MOSFET的總RDS(on)值。

? 例如,在上述兩個器件中使用相同的Trench 9 40V技術平臺,安世半導體目前能夠放入D2PAK的最大晶圓的RDS(on)值為1.2m?。如果使用體積更小的夾片粘合LFPAK88封裝,該值可減少至 0.7m?,這要歸功于它沒有焊線電阻。[注:0.55m?的LFPAK88器件正在T9平臺上開發]。

3.寄生源極電感 (nH)

? 在每個開關事件中,必須解決寄生源極電感問題,因為它會降低效率。在需要高頻率開關的應用中,例如在DC/DC轉換器中,這種效率損失會產生很大影響。

? 源極焊線還會增加總寄生源極電感,再加上D2PAK的長引腳,電感值達到5nH。相比之下,由于LFPAK88沒有源極焊線,而且只使用很小的鷗翼引腳,因而電感值僅為1nH。

4.電流/熱量的熱點

? 當高電流通過器件時,它會集中在焊線連接到晶圓的瓶頸處。這些電流熱點可能導致散熱/質量問題。

? 使用LFPAK88,頂部的銅夾片覆蓋了更大區域,因此不會產生熱點。

圖4:D2PAK和LFPAK88的電流密度仿真以及焊線上的熱點

5.熱阻Rth(j-mb) (K/W)

? 與老式封裝相比,LFPAK88具有良好的熱性能。例如,如果我們計算從晶圓到封裝底部連接至印刷電路板處(從結到貼裝基底)的熱阻,熱阻值越低越好。

? D2PAK中的最大芯片的熱阻為0.43K/W;LFPAK88的熱阻為0.35K/W。

? 更低的熱阻值主要歸功于傳熱路線更短,漏極銅夾片更?。↙FPAK88的厚度為0.5mm,D2PAK的厚度為1.3mm)

圖5:LFPAK88較薄的漏極散熱片和D2PAK的對比

功率密度1W/mm3

尺寸更小,電流能力更高,RDS(on)值更低,這些優勢結合在一起,使功率密度得以提高,正如表中所總結(使用相同技術平臺來提供相近的性能)

LFPAK88

D2PAK

晶圓技術

汽車級T9 40V

汽車級T9 40V

產品型號

BUK7S0R7-40H

BUK761R2-40H

體積x*y*z mm3

8mm* 8mm*1.7mm =108.8mm3

10.3mm*15.8mm*4.5mm=732.3mm3

功率I2R = W

(425A)2 * 0.7m? = 126.4W

(120A)2 * 1.2m? = 17.3W

功率密度W/mm3

126.4/108.8 = 1.16 W/mm3

17.3/732.3 = 0.024 W/mm3

LFPAK88與D2PAK比較

功率密度提高48倍

結論

總而言之,要提高功率密度,不僅需要晶圓技術的改進,還必須利用新的封裝技術,充分發揮分立式MOSFET的潛能。LFPAK全銅夾片封裝系列增強了晶圓的性能表現,能夠幫助我們減小占位面積,提高功率輸出。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 封裝技術
    +關注

    關注

    12

    文章

    553

    瀏覽量

    68038
  • LFPAK
    +關注

    關注

    0

    文章

    4

    瀏覽量

    7729
  • 焊線技術
    +關注

    關注

    0

    文章

    4

    瀏覽量

    5923
收藏 人收藏

    評論

    相關推薦

    如何使用耦合電感器提高DC-DC應用中的功率密度?

    電感器,能夠顯著提高功率密度,使其與最先進的替代品相媲美,同時保持巨大的性能優勢。多相耦合電感器在繞組之間具有反向耦合,能夠在每個相的電流中實現電流紋波的消除。這一優
    的頭像 發表于 12-23 14:07 ?238次閱讀
    如何使用耦合電感器<b class='flag-5'>提高</b>DC-DC應用中的<b class='flag-5'>功率密度</b>?

    PD快充芯片U8608凸顯高功率密度優勢

    PD快充芯片U8608凸顯高功率密度優勢氮化鎵芯片具備令人矚目的高功率密度特性,這意味著它可以在相對較小的尺寸上輸出更大的功率。在當下眾多需
    的頭像 發表于 12-19 16:15 ?213次閱讀
    PD快充<b class='flag-5'>芯片</b>U8608凸顯高<b class='flag-5'>功率密度</b>優勢

    源鉗位反激控制器(UCC28780)其在提高功率密度方面的優勢

    本文是德州儀器(Texas Instruments)發布的關于有源鉗位反激控制器(UCC28780)的應用簡報,介紹了其在提高功率密度方面的優勢,主要內容包括: *附件:源鉗位反激控制器
    的頭像 發表于 12-17 16:42 ?443次閱讀
    源鉗位反激控制器(UCC28780)其在<b class='flag-5'>提高</b><b class='flag-5'>功率密度</b>方面的優勢

    漢思新材料:芯片封裝爆光--芯片金線包封膠 #芯片封裝 #電子膠 #芯片

    芯片封裝
    漢思新材料
    發布于 :2024年11月29日 11:07:51

    功率器件熱設計基礎(四)——功率半導體芯片溫度和測試方法

    功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,
    的頭像 發表于 11-12 01:04 ?1074次閱讀
    <b class='flag-5'>功率</b>器件熱設計基礎(四)——<b class='flag-5'>功率</b>半導體<b class='flag-5'>芯片</b>溫度和測試方法

    芯片封裝曝光-芯片底部填充膠 #芯片封裝 #電路保護

    芯片封裝
    漢思新材料
    發布于 :2024年10月15日 16:25:32

    如何通過創新封裝技術提升功率器件性能

    由于對提高功率密度的需求,功率器件、封裝和冷卻技術面臨獨特的挑戰。在功率轉換過程中,高溫和溫度波動限制了設備的最大
    的頭像 發表于 09-03 10:37 ?485次閱讀
    如何通過創新<b class='flag-5'>封裝</b>技術提升<b class='flag-5'>功率</b>器件性能

    芯片封裝曝光-芯片填充膠 #芯片封裝 #芯片膠 #PCB點膠 #芯片點膠

    芯片封裝
    漢思新材料
    發布于 :2024年08月29日 15:17:19

    TPS25981-提高功率密度

    電子發燒友網站提供《TPS25981-提高功率密度.pdf》資料免費下載
    發表于 08-26 09:34 ?1次下載
    TPS25981-<b class='flag-5'>提高</b><b class='flag-5'>功率密度</b>

    芯片封裝曝光-芯片包封膠#芯片膠#

    芯片封裝
    漢思新材料
    發布于 :2024年08月15日 14:46:06

    Vishay推出采用PowerPAK 8x8LR封裝的第四代600 VE系列功率MOSFET

    Vishay 推出首款采用新型 PowerPAK 8 x 8 LR 封裝的第四代 600 V E 系列功率MOSFET,為通信、工業和計算應用提供高效的高功率密度解決方案。
    的頭像 發表于 05-10 11:47 ?1060次閱讀
    Vishay推出采用PowerPAK 8x8LR<b class='flag-5'>封裝</b>的第四代600 VE<b class='flag-5'>系列</b><b class='flag-5'>功率</b>MOSFET

    芯片點膠加工#芯片封裝 #芯片

    芯片封裝
    漢思新材料
    發布于 :2024年04月17日 10:54:20

    如何實現高功率密度三相全橋SiC功率模塊設計與開發呢?

    為滿足快速發展的電動汽車行業對高功率密度 SiC 功率模塊的需求,進行了 1 200 V/500 A 高功率密度三相 全橋 SiC 功率模塊設計與開發,提出了一種基于多疊層直接鍵合銅單
    的頭像 發表于 03-13 10:34 ?2033次閱讀
    如何實現高<b class='flag-5'>功率密度</b>三相全橋SiC<b class='flag-5'>功率</b>模塊設計與開發呢?

    塑料單端表面安裝封裝LFPAK56E)程序包信息

    電子發燒友網站提供《塑料單端表面安裝封裝LFPAK56E)程序包信息.pdf》資料免費下載
    發表于 02-19 10:25 ?0次下載
    塑料單端表面安裝<b class='flag-5'>封裝</b>(<b class='flag-5'>LFPAK</b>56E)程序包信息
    百家乐分| 大发888在线娱乐合作伙伴| 皇冠百家乐客户端皇冠| 大发88846| 百家乐官网变牌器| 百家乐娱乐城备用网址| 澳门永利| 百家乐官网群的微博| 百家乐园百乐彩| 百家乐官网稳赚打法| 百家乐游戏群号| 永利博线上娱乐| 网上百家乐投注法| 丰禾国际| 网上百家乐真实吗| 牛牛现金棋牌| 百家乐怎样发牌| 即时比分直播| 做生意发财招财图像| 上游棋牌大厅| 网上百家乐官网公司| 一起游乐棋牌下载| 千亿百家乐官网的玩法技巧和规则 | 赌场百家乐官网投注公式| 怎么看百家乐路单| 网上百家乐官网真实吗| 网上百家乐赌钱| 真人百家乐赌博| 哪个百家乐网站最大| 在线百家乐官网赌场| 网上百家乐有哪些玩法| 百家乐官网连开6把小| 旧金山百家乐的玩法技巧和规则 | 柬埔寨百家乐官网的玩法技巧和规则 | 赢家百家乐官网的玩法技巧和规则| 现金网送体验金| 百家乐五局八星| 额尔古纳市| 万龙百家乐的玩法技巧和规则 | 百家乐官网视频交流| 百家乐赌博赌博平台|