衡阳派盒市场营销有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

新的深度學(xué)習(xí)研究打破了自動駕駛汽車圖像識別能力的記錄

倩倩 ? 來源:新經(jīng)網(wǎng) ? 2020-07-07 17:09 ? 次閱讀

人,自行車,汽車或道路,天空,草地:圖像的哪些像素代表無人駕駛汽車前的不同前景人物或物體,哪些像素代表背景類別?這項稱為全景分割的任務(wù)是一個基本問題,已在許多領(lǐng)域中應(yīng)用,例如自動駕駛汽車,機(jī)器人技術(shù),增強(qiáng)現(xiàn)實,甚至在生物醫(yī)學(xué)圖像分析中。在弗萊堡大學(xué)計算機(jī)科學(xué)系,Abhinav Valada博士是機(jī)器人學(xué)習(xí)的助理教授,也是BrainLinks-BrainTools的成員,他專注于這個研究問題。Valada和他的團(tuán)隊開發(fā)了最先進(jìn)的“ EfficientPS”人工智能(AI)模型,該模型可以更快,更有效地對視覺場景進(jìn)行連貫識別。

這項任務(wù)通常使用稱為深度學(xué)習(xí)機(jī)器學(xué)習(xí)技術(shù)來解決,其中人工神經(jīng)網(wǎng)絡(luò)弗賴堡研究人員解釋說,它們是從人腦中汲取靈感,從大量數(shù)據(jù)中學(xué)習(xí)。諸如Cityscapes之類的公共基準(zhǔn)在衡量這些技術(shù)的進(jìn)步方面起著重要作用。Valada團(tuán)隊的成員Rohit Mohan說:“多年來,來自Google或Uber的研究團(tuán)隊一直在這些基準(zhǔn)測試中爭奪榜首。” 來自弗萊堡(Freiburg)的計算機(jī)科學(xué)家的方法已被開發(fā)出來,用于理解城市的城市場景,在“城市景觀”(Cityscapes)中排名第一,Cityscapes是最有影響力的自動駕駛場景理解研究的排行榜。EfficientPS還始終在其他標(biāo)準(zhǔn)基準(zhǔn)數(shù)據(jù)集(例如KITTI,Mapillary Vistas和IDD)上設(shè)置新的最新技術(shù)。

在項目網(wǎng)站上,Valada展示了團(tuán)隊如何在各種數(shù)據(jù)集上訓(xùn)練不同AI模型的示例。結(jié)果疊加在相應(yīng)的輸入圖像上,其中顏色顯示模型將像素分配給的對象類別。例如,汽車標(biāo)記為藍(lán)色,人物標(biāo)記為紅色,樹木標(biāo)記為綠色,建筑物標(biāo)記為灰色。此外,AI模型還在每個被視為獨(dú)立實體的對象周圍繪制邊框。弗萊堡大學(xué)的研究人員成功地訓(xùn)練了該模型,以將所學(xué)的城市場景信息從斯圖加特轉(zhuǎn)移到紐約市。盡管AI模型不知道美國的城市長什么樣,但它能夠準(zhǔn)確識別紐約市的場景。

Valada解釋說,以前解決該問題的大多數(shù)方法都具有較大的模型尺寸,并且在實際應(yīng)用中(例如受資源嚴(yán)重限制的機(jī)器人技術(shù))在計算上非常昂貴,“我們的EfficientPS不僅可以實現(xiàn)最新的性能,而且這也是計算效率最高,最快的方法。這進(jìn)一步擴(kuò)展了可以使用EfficientPS的應(yīng)用程序。”

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    AI圖像識別攝像機(jī)

    ?AI圖像識別攝像機(jī)是一種集成了先進(jìn)算法和深度學(xué)習(xí)模型的智能監(jiān)控設(shè)備。這些攝像機(jī)不僅能夠捕捉視頻畫面,還能實時分析和處理所拍攝的內(nèi)容,從而實現(xiàn)對特定對象、場景或行
    的頭像 發(fā)表于 11-08 10:38 ?357次閱讀
    AI<b class='flag-5'>圖像識別</b>攝像機(jī)

    GPU深度學(xué)習(xí)應(yīng)用案例

    能力,可以顯著提高圖像識別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識別自動駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度
    的頭像 發(fā)表于 10-27 11:13 ?511次閱讀

    AI大模型在圖像識別中的優(yōu)勢

    AI大模型在圖像識別中展現(xiàn)出了顯著的優(yōu)勢,這些優(yōu)勢主要源于其強(qiáng)大的計算能力、深度學(xué)習(xí)算法以及大規(guī)模的數(shù)據(jù)處理能力。以下是對AI大模型在
    的頭像 發(fā)表于 10-23 15:01 ?1022次閱讀

    FPGA在自動駕駛領(lǐng)域有哪些優(yōu)勢?

    領(lǐng)域的主要優(yōu)勢: 高性能與并行處理能力: FPGA內(nèi)部包含大量的邏輯門和可配置的連接,能夠同時處理多個數(shù)據(jù)流和計算任務(wù)。這種并行處理能力使得FPGA在處理自動駕駛中復(fù)雜的圖像識別、傳
    發(fā)表于 07-29 17:11

    FPGA在自動駕駛領(lǐng)域有哪些應(yīng)用?

    低,適合用于實現(xiàn)高效的圖像算法,如車道線檢測、交通標(biāo)志識別等。 雷達(dá)和LiDAR處理:自動駕駛汽車通常會使用雷達(dá)和LiDAR(激光雷達(dá))等多種傳感器來獲取環(huán)境信息。FPGA能夠協(xié)助完成
    發(fā)表于 07-29 17:09

    自動駕駛汽車如何識別障礙物

    自動駕駛汽車識別障礙物是一個復(fù)雜而關(guān)鍵的過程,它依賴于多種傳感器和技術(shù)的協(xié)同工作。這些傳感器主要包括激光雷達(dá)(LiDAR)、雷達(dá)、攝像頭以及超聲波雷達(dá)等,它們各自具有不同的工作原理和優(yōu)勢,共同為
    的頭像 發(fā)表于 07-23 16:40 ?1491次閱讀

    目標(biāo)檢測與圖像識別的區(qū)別在哪

    目標(biāo)檢測與圖像識別是計算機(jī)視覺領(lǐng)域中的兩個重要研究方向,它們在實際應(yīng)用中有著廣泛的應(yīng)用,如自動駕駛、智能監(jiān)控、醫(yī)療診斷等。盡管它們在某些方面有相似之處,但它們之間存在一些關(guān)鍵的區(qū)別。 基本概念 目標(biāo)
    的頭像 發(fā)表于 07-17 09:51 ?1085次閱讀

    圖像識別算法都有哪些方法

    圖像識別算法是計算機(jī)視覺領(lǐng)域的核心任務(wù)之一,它涉及到從圖像中提取特征并進(jìn)行分類、識別和分析的過程。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,
    的頭像 發(fā)表于 07-16 11:14 ?6068次閱讀

    圖像識別算法的提升有哪些

    引言 圖像識別是計算機(jī)視覺領(lǐng)域的核心任務(wù)之一,旨在使計算機(jī)能夠自動識別和理解圖像中的內(nèi)容。隨著計算機(jī)硬件的發(fā)展和深度
    的頭像 發(fā)表于 07-16 11:12 ?746次閱讀

    圖像識別算法的優(yōu)缺點有哪些

    圖像識別算法是一種利用計算機(jī)視覺技術(shù)對圖像進(jìn)行分析和理解的方法,它在許多領(lǐng)域都有廣泛的應(yīng)用,如自動駕駛、醫(yī)療診斷、安全監(jiān)控等。然而,圖像識別算法也存在一些優(yōu)缺點。 一、
    的頭像 發(fā)表于 07-16 11:09 ?1907次閱讀

    圖像識別屬于人工智能嗎

    的過程。它涉及到圖像的獲取、預(yù)處理、特征提取、分類和識別等多個環(huán)節(jié)。 1.2 重要性 圖像識別技術(shù)在人工智能領(lǐng)域具有重要的地位,它使計算機(jī)能夠“看”和“理解”圖像,為機(jī)器視覺、
    的頭像 發(fā)表于 07-16 10:44 ?1334次閱讀

    如何利用CNN實現(xiàn)圖像識別

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)是深度學(xué)習(xí)領(lǐng)域中一種特別適用于圖像識別任務(wù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。它通過模擬人類視覺系統(tǒng)的處理方式,利用卷積、池化等操作,自動提取圖像
    的頭像 發(fā)表于 07-03 16:16 ?1525次閱讀

    神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在圖像識別領(lǐng)域的應(yīng)用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強(qiáng)大的特征提取和分類能力,為圖像識別帶來了革命性的進(jìn)步。本文將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用案例,包括
    的頭像 發(fā)表于 07-01 14:19 ?823次閱讀

    深度學(xué)習(xí)自動駕駛中的關(guān)鍵技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,自動駕駛技術(shù)作為其中的重要分支,正逐漸走向成熟。在自動駕駛系統(tǒng)中,深度學(xué)習(xí)技術(shù)發(fā)揮著至關(guān)重要的作用。它通過模擬人腦的學(xué)習(xí)
    的頭像 發(fā)表于 07-01 11:40 ?866次閱讀

    未來已來,多傳感器融合感知是自動駕駛破局的關(guān)鍵

    巨大的進(jìn)展;自動駕駛開始摒棄手動編碼規(guī)則和機(jī)器學(xué)習(xí)模型的方法,轉(zhuǎn)向全面采用端到端的神經(jīng)網(wǎng)絡(luò)AI系統(tǒng),它能模仿學(xué)習(xí)人類司機(jī)的駕駛,遇到場景直接輸入傳感器數(shù)據(jù),再直接輸出轉(zhuǎn)向、制動和加速信
    發(fā)表于 04-11 10:26
    百家乐庄闲机率| e世博百家乐官网娱乐场| 百家乐套装| 澳门百家乐官网国际娱乐城| 威尼斯人娱乐网站| 女优百家乐官网的玩法技巧和规则| 德州扑克顺子| 百家乐路单之我见| 永利高百家乐官网怎样开户| 威尼斯人娱乐城官网地址| 百家乐官网规| 百家乐官网公式分析| 威尼斯人娱乐城品牌| 新花园百家乐官网的玩法技巧和规则| 六合彩今天开什么| 誉博百家乐327589| 百家乐官网免费下| 大田县| 至尊百家乐20130201| 百家乐官网庄闲和的倍数| 大发888城官方下载| 威尼斯人娱乐城地址| 百家乐官网德州| 盘锦市| 威尼斯人娱乐场棋牌| 百家乐的破解方法| 利好线上娱乐| 星期8百家乐娱乐城| 百家乐长玩必输| 土默特右旗| 大发888赢速通充值| 狮威百家乐娱乐平台| 澳门百家乐官网群代理| 顶旺亚洲娱乐| 博发百家乐的玩法技巧和规则| 百家乐官网游戏筹码| 网上百家乐官网辅助软件| 金都娱乐| 新全讯网网站112| 介绍百家乐赌博技巧| 888百家乐官网的玩法技巧和规则|