Nanodcal是一款基于非平衡態(tài)格林函數(shù)-密度泛函理論(NEGF - DFT)的第一性原理計(jì)算軟件,主要用于模擬器件材料中的非線性、非平衡的量子輸運(yùn)過程,是目前國內(nèi)唯一一款擁有自主知識(shí)產(chǎn)權(quán)的基于第一性原理的輸運(yùn)軟件。可預(yù)測材料的電流 - 電壓特性、電子透射幾率等眾多輸運(yùn)性質(zhì)。
迄今為止,Nanodcal 已成功應(yīng)用于1維、2維、3維材料物性、分子電子器件、自旋電子器件、光電流器件、半導(dǎo)體電子器件設(shè)計(jì)等重要研究課題中,并將逐步推廣到更廣闊的電子輸運(yùn)性質(zhì)研究的領(lǐng)域。
本期將給大家介紹Nanodcal自旋器件1.3.2-1.3.3的內(nèi)容。
1.3.2 鎳/黑磷/鎳隧道結(jié)的電輸運(yùn)
1.3.2.1 計(jì)算模型
用戶可參考第一部分Device Studio建模的過程,自行搭建Ni(111)和Ni(100)MTJs。圖2-1給出了本章研究所采用的計(jì)算模型即Ni(111)/MBP/Ni(111)及Ni(100)/MBP/Ni(100) MTJs。這種結(jié)構(gòu)是一個(gè)開放式雙電極體系,由三個(gè)部分組成,分別為左電極、中心區(qū)、右電極。Ni(111)/MBP/Ni(111)及Ni(100)/MBP/Ni(100)隧道結(jié)在x方向具有周期性,分別為4.316?和3.524?,y方向是輸運(yùn)方向。圖2-28(e,f,g)分別為黑磷結(jié)構(gòu)的俯視圖和側(cè)視圖, 晶格常數(shù)為a=4.58?,b=3.32?。MBP的a或b拉伸±6%后,與Ni/MBP/Ni隧道結(jié)的x方向的晶格常數(shù)相匹配。通過結(jié)構(gòu)優(yōu)化,得到Ni(111)、Ni(100)基底表面與黑磷的最佳距離分別為2.0?、1.95?。
1.3.2.2 輸運(yùn)計(jì)算
PC代表平行結(jié)構(gòu),APC代表反平行結(jié)構(gòu)。由于體系較大,推薦使用服務(wù)器進(jìn)行計(jì)算。
1.3.2.2.1 自洽計(jì)算(平衡態(tài)下)
以平行結(jié)構(gòu)Ni(111)/MBP/Ni(111)為例:
A.電極自洽計(jì)算-PC
(1)準(zhǔn)備輸入文件:scf.input
;基組文件Ni_LDA-DZP.nad
,PNi_LDA-DZP.nad
%%What quantities should be calculatedcalculation.name = scf%Basic settingcalculation.occupationFunction.temperature = 100calculation.realspacegrids.E_cutoff = 80 Hartreecalculation.xcFunctional.Type = LDA_PZ81calculation.k_spacegrids.number = [ 100 1 1 ]'system.centralCellVectors = [[2.4918 0 0]' [0 4.316 0]' [0 0 25]']system.spinType = CollinearSpin%Iteration controlcalculation.SCF.monitoredVariableName = {'rhoMatrix','hMatrix','totalEnergy','bandEnergy','gridCharge','orbitalCharge','spinPolar'}calculation.SCF.convergenceCriteria = {1e-04,1e-04,[],[],[],[],[]}calculation.SCF.maximumSteps = 200calculation.SCF.mixMethod = Pulaycalculation.SCF.mixRate = 0.1calculation.SCF.mixingMode = Hcalculation.SCF.startingMode = H%calculation.SCF.donatorObject = NanodcalObject.mat%Basic setsystem.neutralAtomDataDirectory = '../'system.atomBlock = 10AtomType OrbitalType X Y Z SpinPolarizationNi LDA-DZP 1.86888322 3.95633418 14.51182073 0.3Ni LDA-DZP 0.62296107 1.79833372 14.51182073 0.3Ni LDA-DZP 1.86888322 2.51766721 12.47723838 0.3Ni LDA-DZP 0.62296107 0.35966675 12.47723838 0.3Ni LDA-DZP 1.86888322 1.07900023 10.44265604 0.3Ni LDA-DZP 0.62296107 3.23700070 10.44265604 0.3Ni LDA-DZP 1.86888322 3.95633418 40807369 0.3Ni LDA-DZP 0.62296107 1.79833372 40807369 0.3Ni LDA-DZP 1.86888322 2.51766721 6.37349134 0.3Ni LDA-DZP 0.62296107 0.35966675 6.37349134 0.3end
(2)自洽計(jì)算:連接服務(wù)器(請參見Device Studio的工具欄中help→help Topic→7.應(yīng)用實(shí)例→7.1Nanodcal實(shí)例)在選擇服務(wù)器后,選中scf.input
右擊run。等待計(jì)算完畢后點(diǎn)擊JobManager所示界面中的Action下的下載按鈕下載NanodcalObject.mat
文件。
B.中心區(qū)的自洽計(jì)算-PC
(1)準(zhǔn)備輸入文件:scf.input
;基組文件Ni_LDA-DZP.nad
,PNi_LDA-DZP.nad
%%What quantities should be calculatedcalculation.name = scf%Basic settingcalculation.occupationFunction.temperature = 100calculation.realspacegrids.E_cutoff = 80 Hartreecalculation.xcFunctional.Type = LDA_PZ81calculation.k_spacegrids.number = [ 1 1 1 ]'%Description of electrodesystem.numberOfLeads = 2system.typeOfLead1 = frontsystem.voltageOfLead1 = 0system.objectOfLead1 = ../FrontElectrode/NanodcalObject.matsystem.spinDirectionOfLead1 = [0 0 1] %電極1的自旋方向system.typeOfLead2 = backsystem.voltageOfLead2 = 0system.objectOfLead2 = ../BackElectrode/NanodcalObject.matsystem.spinDirectionOfLead2 = [0 0 1] %電極2的自旋方向%Contour integral%calculation.complexEcontour.lowestEnergyPoint = 1.5 Hartreecalculation.complexEcontour.numberOfPoints = 40calculation.realEcontour.interval = 0.0272114calculation.realEcontour.eta = 0.0272114system.centralCellVectors = [[46563 0 0]' [0 4.316 0]' [0 0 25]']system.spinType = CollinearSpin%Iteration controlcalculation.SCF.monitoredVariableName = {'rhoMatrix','hMatrix','totalEnergy','bandEnergy','gridCharge','orbitalCharge','spinPolar'}calculation.SCF.convergenceCriteria = {1e-04,1e-04,[],[],[],[],[]}calculation.SCF.maximumSteps = 200calculation.SCF.mixMethod = Pulaycalculation.SCF.mixRate = 0.1calculation.SCF.mixingMode = Hcalculation.SCF.startingMode = H%calculation.SCF.donatorObject = NanodcalObject.mat%Basic setsystem.neutralAtomDataDirectory = '../'system.atomBlock = 159AtomType OrbitalType X Y Z SpinPolarizationP LDA-DZP 11.07494990 3.60404468 162650771 0.3P LDA-DZP 14.38825099 3.60404468 162650771 0.3P LDA-DZP 17.70155016 3.60404515 162650771 0.3P LDA-DZP 21.01484934 3.60404515 162650771 0.3P LDA-DZP 24.32815043 3.60404515 162650771 0.3P LDA-DZP 27.64144961 3.60404515 162650771 0.3P LDA-DZP 30.95475070 3.60404515 162650771 0.3P LDA-DZP 34.26805178 3.60404563 162650771 0.3P LDA-DZP 37.58135287 3.60404563 162650771 0.3P LDA-DZP 11.07494990 2.89895606 16.46069045 0.3P LDA-DZP 14.38824908 2.89895606 16.46069045 0.3P LDA-DZP 17.70155016 2.89895654 16.46069045 0.3P LDA-DZP 21.01484934 2.89895654 16.46069045 0.3P LDA-DZP 24.32815043 2.89895654 16.46069045 0.3P LDA-DZP 27.64144961 2.89895558 16.46069045 0.3P LDA-DZP 30.95475070 2.89895558 16.46069045 0.3P LDA-DZP 34.26805178 2.89895606 16.46069045 0.3P LDA-DZP 37.58135287 2.89895606 16.46069045 0.3P LDA-DZP 9.41830031 1.41704440 16.46069045 0.3P LDA-DZP 12.73160044 1.41704440 16.46069045 0.3P LDA-DZP 16.04489962 1.41704488 16.46069045 0.3P LDA-DZP 19.35819880 1.41704488 16.46069045 0.3P LDA-DZP 22.67149989 1.41704488 16.46069045 0.3P LDA-DZP 25.98480097 1.41704488 16.46069045 0.3P LDA-DZP 29.29810015 1.41704488 16.46069045 0.3P LDA-DZP 32.61140124 1.41704488 16.46069045 0.3P LDA-DZP 35.92469851 1.41704535 16.46069045 0.3P LDA-DZP 39.23799960 1.41704535 16.46069045 0.3P LDA-DZP 9.41830031 0.71195674 162650771 0.3P LDA-DZP 12.73160044 0.71195698 162650771 0.3P LDA-DZP 16.04489962 0.71195698 162650771 0.3P LDA-DZP 19.35820071 0.71195698 162650771 0.3P LDA-DZP 22.67149989 0.71195722 162650771 0.3P LDA-DZP 25.98480097 0.71195531 162650771 0.3P LDA-DZP 29.29810015 0.71195555 162650771 0.3P LDA-DZP 32.61140124 0.71195555 162650771 0.3P LDA-DZP 35.92469851 0.71195555 162650771 0.3P LDA-DZP 39.23799960 0.71195579 162650771 0.3P LDA-DZP 25.98480097 0.71195531 162650866 0.3Ni LDA-DZP 46.78737049 3.95633418 40807369 0.3Ni LDA-DZP 46.78737049 3.95633418 14.51182073 0.3Ni LDA-DZP 44.29552619 3.95633418 40807369 0.3Ni LDA-DZP 44.29552619 3.95633418 14.51182073 0.3Ni LDA-DZP 36.81999330 3.95633418 40807369 0.3Ni LDA-DZP 41.80368189 3.95633418 40807369 0.3Ni LDA-DZP 39.31183760 3.95633418 40807369 0.3Ni LDA-DZP 36.81999330 3.95633418 14.51182073 0.3Ni LDA-DZP 41.80368189 3.95633418 14.51182073 0.3Ni LDA-DZP 39.31183760 3.95633418 14.51182073 0.3Ni LDA-DZP 34.32814900 3.95633418 40807369 0.3Ni LDA-DZP 34.32814900 3.95633418 14.51182073 0.3Ni LDA-DZP 45.54144834 3.23700070 10.44265604 0.3Ni LDA-DZP 403329264 3.23700070 10.44265604 0.3Ni LDA-DZP 43.04960404 3.23700070 10.44265604 0.3Ni LDA-DZP 306591545 3.23700070 10.44265604 0.3Ni LDA-DZP 40.55775975 3.23700070 10.44265604 0.3Ni LDA-DZP 35.57407115 3.23700070 10.44265604 0.3Ni LDA-DZP 46.78737049 2.51766721 6.37349134 0.3Ni LDA-DZP 46.78737049 2.51766721 12.47723838 0.3Ni LDA-DZP 44.29552619 2.51766721 6.37349134 0.3Ni LDA-DZP 44.29552619 2.51766721 12.47723838 0.3Ni LDA-DZP 39.31183760 2.51766721 6.37349134 0.3Ni LDA-DZP 36.81999330 2.51766721 6.37349134 0.3Ni LDA-DZP 41.80368189 2.51766721 6.37349134 0.3Ni LDA-DZP 39.31183760 2.51766721 12.47723838 0.3Ni LDA-DZP 36.81999330 2.51766721 12.47723838 0.3Ni LDA-DZP 41.80368189 2.51766721 12.47723838 0.3Ni LDA-DZP 34.32814900 2.51766721 6.37349134 0.3Ni LDA-DZP 34.32814900 2.51766721 12.47723838 0.3Ni LDA-DZP 403329264 1.79833372 40807369 0.3Ni LDA-DZP 403329264 1.79833372 14.51182073 0.3Ni LDA-DZP 45.54144834 1.79833372 40807369 0.3Ni LDA-DZP 43.04960404 1.79833372 40807369 0.3Ni LDA-DZP 43.04960404 1.79833372 14.51182073 0.3Ni LDA-DZP 45.54144834 1.79833372 14.51182073 0.3Ni LDA-DZP 306591545 1.79833372 40807369 0.3Ni LDA-DZP 40.55775975 1.79833372 40807369 0.3Ni LDA-DZP 306591545 1.79833372 14.51182073 0.3Ni LDA-DZP 40.55775975 1.79833372 14.51182073 0.3Ni LDA-DZP 35.57407115 1.79833372 40807369 0.3Ni LDA-DZP 35.57407115 1.79833372 14.51182073 0.3Ni LDA-DZP 46.78737049 1.07900023 10.44265604 0.3Ni LDA-DZP 44.29552619 1.07900023 10.44265604 0.3Ni LDA-DZP 41.80368189 1.07900023 10.44265604 0.3Ni LDA-DZP 39.31183760 1.07900023 10.44265604 0.3Ni LDA-DZP 36.81999330 1.07900023 10.44265604 0.3Ni LDA-DZP 34.32814900 1.07900023 10.44265604 0.3Ni LDA-DZP 403329264 0.35966675 6.37349134 0.3Ni LDA-DZP 403329264 0.35966675 12.47723838 0.3Ni LDA-DZP 45.54144834 0.35966675 6.37349134 0.3Ni LDA-DZP 45.54144834 0.35966675 12.47723838 0.3Ni LDA-DZP 43.04960404 0.35966675 6.37349134 0.3Ni LDA-DZP 43.04960404 0.35966675 12.47723838 0.3Ni LDA-DZP 40.55775975 0.35966675 6.37349134 0.3Ni LDA-DZP 40.55775975 0.35966675 12.47723838 0.3Ni LDA-DZP 306591545 0.35966675 6.37349134 0.3Ni LDA-DZP 306591545 0.35966675 12.47723838 0.3Ni LDA-DZP 35.57407115 0.35966675 6.37349134 0.3Ni LDA-DZP 35.57407115 0.35966675 12.47723838 0.3Ni LDA-DZP 11.83630471 3.95633418 14.51182073 0.3Ni LDA-DZP 6.85261611 3.95633418 14.51182073 0.3Ni LDA-DZP 1.86892752 3.95633418 14.51182073 0.3Ni LDA-DZP 14.32814900 3.95633418 14.51182073 0.3Ni LDA-DZP 9.34446041 3.95633418 14.51182073 0.3Ni LDA-DZP 4.36077182 3.95633418 14.51182073 0.3Ni LDA-DZP 10.59038256 1.79833372 14.51182073 0.3Ni LDA-DZP 5.60669396 1.79833372 14.51182073 0.3Ni LDA-DZP 0.62300537 1.79833372 14.51182073 0.3Ni LDA-DZP 13.08222686 1.79833372 14.51182073 0.3Ni LDA-DZP 09853826 1.79833372 14.51182073 0.3Ni LDA-DZP 3.11484967 1.79833372 14.51182073 0.3Ni LDA-DZP 14.32814900 2.51766721 12.47723838 0.3Ni LDA-DZP 9.34446041 2.51766721 12.47723838 0.3Ni LDA-DZP 4.36077182 2.51766721 12.47723838 0.3Ni LDA-DZP 11.83630471 2.51766721 12.47723838 0.3Ni LDA-DZP 6.85261611 2.51766721 12.47723838 0.3Ni LDA-DZP 1.86892752 2.51766721 12.47723838 0.3Ni LDA-DZP 13.08222686 0.35966675 12.47723838 0.3Ni LDA-DZP 09853826 0.35966675 12.47723838 0.3Ni LDA-DZP 3.11484967 0.35966675 12.47723838 0.3Ni LDA-DZP 10.59038256 0.35966675 12.47723838 0.3Ni LDA-DZP 5.60669396 0.35966675 12.47723838 0.3Ni LDA-DZP 0.62300537 0.35966675 12.47723838 0.3Ni LDA-DZP 11.83630471 1.07900023 10.44265604 0.3Ni LDA-DZP 6.85261611 1.07900023 10.44265604 0.3Ni LDA-DZP 1.86892752 1.07900023 10.44265604 0.3Ni LDA-DZP 14.32814900 1.07900023 10.44265604 0.3Ni LDA-DZP 9.34446041 1.07900023 10.44265604 0.3Ni LDA-DZP 4.36077182 1.07900023 10.44265604 0.3Ni LDA-DZP 13.08222686 3.23700070 10.44265604 0.3Ni LDA-DZP 09853826 3.23700070 10.44265604 0.3Ni LDA-DZP 3.11484967 3.23700070 10.44265604 0.3Ni LDA-DZP 10.59038256 3.23700070 10.44265604 0.3Ni LDA-DZP 5.60669396 3.23700070 10.44265604 0.3Ni LDA-DZP 0.62300537 3.23700070 10.44265604 0.3Ni LDA-DZP 11.83630471 3.95633418 40807369 0.3Ni LDA-DZP 6.85261611 3.95633418 40807369 0.3Ni LDA-DZP 1.86892752 3.95633418 40807369 0.3Ni LDA-DZP 14.32814900 3.95633418 40807369 0.3Ni LDA-DZP 9.34446041 3.95633418 40807369 0.3Ni LDA-DZP 4.36077182 3.95633418 40807369 0.3Ni LDA-DZP 10.59038256 1.79833372 40807369 0.3Ni LDA-DZP 5.60669396 1.79833372 40807369 0.3Ni LDA-DZP 0.62300537 1.79833372 40807369 0.3Ni LDA-DZP 13.08222686 1.79833372 40807369 0.3Ni LDA-DZP 09853826 1.79833372 40807369 0.3Ni LDA-DZP 3.11484967 1.79833372 40807369 0.3Ni LDA-DZP 14.32814900 2.51766721 6.37349134 0.3Ni LDA-DZP 9.34446041 2.51766721 6.37349134 0.3Ni LDA-DZP 4.36077182 2.51766721 6.37349134 0.3Ni LDA-DZP 11.83630471 2.51766721 6.37349134 0.3Ni LDA-DZP 6.85261611 2.51766721 6.37349134 0.3Ni LDA-DZP 1.86892752 2.51766721 6.37349134 0.3Ni LDA-DZP 13.08222686 0.35966675 6.37349134 0.3Ni LDA-DZP 09853826 0.35966675 6.37349134 0.3Ni LDA-DZP 3.11484967 0.35966675 6.37349134 0.3Ni LDA-DZP 10.59038256 0.35966675 6.37349134 0.3Ni LDA-DZP 5.60669396 0.35966675 6.37349134 0.3Ni LDA-DZP 0.62300537 0.35966675 6.37349134 0.3end
(2)自洽計(jì)算:連接服務(wù)器(請參見Device Studio的工具欄中help→help Topic→7.應(yīng)用實(shí)例→7.1Nanodcal實(shí)例)在選擇服務(wù)器后,選中scf.input
右擊run。等待計(jì)算完畢后點(diǎn)擊JobManager所示界面中的Action下的下載按鈕下載NanodcalObject.mat
文件。
以反平行結(jié)構(gòu)Ni(111)/MBP/Ni(111)為例:
C.電極的自洽計(jì)算-APC
與平行結(jié)構(gòu)所有的輸入文件一致
D.中心區(qū)的自洽計(jì)算-APC
(1)準(zhǔn)備輸入文件:scf.input
;基組文件Ni_LDA-DZP.nad
,PNi_LDA-DZP.nad
其中scf.input
與平行結(jié)構(gòu)的區(qū)別在于以下參數(shù),其他參數(shù)一致。
%Description of electrodesystem.numberOfLeads = 2system.typeOfLead1 = frontsystem.voltageOfLead1 = 0system.objectOfLead1 = ../FrontElectrode/NanodcalObject.matsystem.spinDirectionOfLead1 = [0 0 1] %電極1的自旋方向system.typeOfLead2 = backsystem.voltageOfLead2 = 0system.objectOfLead2 = ../BackElectrode/NanodcalObject.matsystem.spinDirectionOfLead2 = [0 0 -1] %電極2的自旋方向
自洽計(jì)算后,我們就可以計(jì)算體系的各種物理性質(zhì)。在本章中,我們將講解如何計(jì)算分析電子透射譜、IV曲線、態(tài)密度、隧穿磁阻、自旋注入率。
1.3.2.2.2 非平衡態(tài)下的自洽計(jì)算
本節(jié)對Ni(111)/MBP/Ni(111)體系,進(jìn)行了偏壓0~100mV下的自洽計(jì)算。
(1)我們以偏壓0.01V為例,準(zhǔn)備輸入文件 與本節(jié)前面平衡態(tài)下的自洽示例不同的是中心區(qū)自洽計(jì)算輸入文scf.input
:
system.voltageOfLead1 = 0.0 system.voltageOfLead2 = 0.0 變?yōu)?system.voltageOfLead1 = 0.005 system.voltageOfLead2 = -0.005 其他不變。
(2)自洽計(jì)算
(3)依次對偏壓0.02V,0.03V,0.04V,0.05V,0.06V,0.07V,0.08V,0.09V,0.1V的體系進(jìn)行自洽計(jì)算。
1.3.2.2.3 電子透射譜計(jì)算
對平衡態(tài)的體系進(jìn)行電子透射譜計(jì)算。以平行結(jié)構(gòu)為例:
(1)準(zhǔn)備輸入文件transmission.input
,Simulator→Nanodcal→Analysis→Transmission→->→Generate file。
system.object = NanodcalObject.matcalculation.name = transmissioncalculation.transmission.kSpaceGridNumber = [ 300 1 1 ]'calculation.transmission.energyPoints = -5:0.025:5calculation.transmission.plot = truecalculation.control.xml = true
(2)自洽計(jì)算:連接服務(wù)器(請參見Device Studio的工具欄中help→help Topic→7.應(yīng)用實(shí)例→7.1Nanodcal實(shí)例)在選擇服務(wù)器后,選中scf.input
右擊run。等待計(jì)算完畢后點(diǎn)擊JobManager所示界面中的Action下的下載按鈕下載Transmission.mat
、Transmission.xml
、Transmission.fig
、CalculatedResults.mat
和log.txt
文件。查看Transmission.mat
文件可得出
>> load –mat Transmission.mat >> data.averagedTransmissionCoefficients ans = 0.0021 0.0111
對于反平行結(jié)構(gòu):計(jì)算的transmission.input
和過程同平行結(jié)構(gòu) 查看Transmission.mat
文件可得出
>> load –mat Transmission.mat >> data.averagedTransmissionCoefficients ans = 0.0041 0.0041
說明:由于Ni(111)/MBP/Ni(111)結(jié)構(gòu)具有對稱性,所以反平行結(jié)構(gòu)的自旋向上和向下的電子透射譜系數(shù)相同。
1.3.2.2.4 投影態(tài)密度計(jì)算
以平行結(jié)構(gòu)Ni(111)/MBP/Ni(111)為例:對平衡態(tài)的體系進(jìn)行態(tài)密度計(jì)算。
(1)準(zhǔn)備輸入文件densityOfStates.input
,Simulator→Nanodcal→Analysis→DensityOfStates→->→Generate file。
(2)態(tài)密度計(jì)算(投影到原子):在Matlab界面,命令窗口輸入:
system.object = NanodcalObject.matcalculation.name = densityOfStatescalculation.densityOfStates.kSpaceGridNumber = [ 8 1 1 ]'calculation.densityOfStates.numberOfEnergyPoints = 401calculation.densityOfStates.energyRange = [-3 , 3]calculation.densityOfStates.whatProjected = 'Atom'calculation.densityOfStates.plot = truecalculation.control.xml = true
(2)自洽計(jì)算:連接服務(wù)器(請參見Device Studio的工具欄中help→help Topic→7.應(yīng)用實(shí)例→7.1Nanodcal實(shí)例)在選擇服務(wù)器后,選中scf.input
右擊run。等待計(jì)算完畢后點(diǎn)擊JobManager所示界面中的Action下的下載按鈕下載DensityOfStates.mat
、DensityOfStates.xml
、DensityOfStates.fig
和log.txt
文件。
1.3.2.2.5 電流計(jì)算
對非平衡態(tài)的體系進(jìn)行電流計(jì)算。我們以偏壓0.01V為例:
(1)偏壓Vbias被定義為VL-VR。對器件施加0.01 V偏壓,中心區(qū)的輸入文件scf.input
改變?nèi)缦拢渌麉?shù)不變。
%Description of electrodesystem.numberOfLeads = 2system.typeOfLead1 = frontsystem.voltageOfLead1 = 0.005system.objectOfLead1 = ../FrontElectrode/NanodcalObject.matsystem.spinDirectionOfLead1 = [0 0 1] %電極1的自旋方向system.typeOfLead2 = backsystem.voltageOfLead2 = -0.005system.objectOfLead2 = ../BackElectrode/NanodcalObject.matsystem.spinDirectionOfLead2 = [0 0 -1] %電極2的自旋方向
-
(2)建立nanodcal計(jì)算IV曲線的輸入文件,如下:
-
Simulator→Nanodcal→Analysis→IVcurve→->→Generate file。
參數(shù)默認(rèn),產(chǎn)生能帶計(jì)算的輸入文件IVcurve.input
,同樣,右擊打開open with,可查看,如下:
calculation.name = ivccalculation.control.temporaryDirectory = ./calculation.IVCurve.systemObjectFiles = ../NanodcalObject.matcalculation.IVCurve.kSpaceGridNumber = [300 1 1]'calculation.control.xml = true
(3)IV曲線計(jì)算:與自洽計(jì)算步驟一樣,選中IVcurve.input
右擊run。等待計(jì)算完畢后點(diǎn)擊Job Manager所示界面中的Action下的下載按鈕下載CurrentVoltageCurves.mat
、CurrentVoltageCurves.fig
、CurrentVoltageCurves.xml
文件。
(4)查看數(shù)據(jù),如下:
>> load –mat CurrentVoltageCurves.mat >> data V1: 0.0050 I1: 3.9405e-09 %電流值 I1_spinDecomposed: [2x1 double] V2: -0.0050 I2: -3.9405e-09 I2_spinDecomposed: [2x1 double] conductance: [1x1 struct] description: [1x1040 char] >> data.I1_spinDecomposed ans = 1.0e-08 * 0.0814 %自旋向上的電流值 0.3126 %自旋向下的電流值
(5)依次對偏壓0.02V,0.03V,0.04V,0.05V,0.06V,0.07V,0.08V,0.09V,0.1V的體系進(jìn)行電流計(jì)算。
1.3.1.2.3 計(jì)算結(jié)果和分析
(1)作圖和分析:I-V曲線和TMR、SIE (根據(jù)3.2.2 輸運(yùn)計(jì)算的結(jié)果,進(jìn)行數(shù)據(jù)繪圖)
I-V曲線 :
偏壓0V,0.01V,0.02V,0.03V,0.04V,0.05V,0.06V,0.07V,0.08V,0.09V,0.1V的體系的電流數(shù)據(jù)依次取值,得到圖1(a),(b),(d),(e)。其中 I_total=I_up+I_down 。
TMR和SIE曲線:
隧穿磁阻(Tunnel magnetoresistance),簡稱:TMR,我們將其定義為:TMR=(I_PC-I_APC)/I_APC ,其中I_PC、I_APC分別代表PC和APC結(jié)構(gòu)的自旋極化電流;自旋極化率η=|(I_↑-I_↓)/(I_↑+I_↓ )|,I_↑和I_↓分別表示自旋向上和自旋向下的自旋極化電流。在平衡態(tài)時(shí),即不加偏壓時(shí),TMR和η由費(fèi)米能級處的電子透射譜系數(shù)計(jì)算得到。以上均適用于Ni(100)/MBP/Ni(100)體系。經(jīng)過一系列計(jì)算和數(shù)據(jù)處理,得到如下圖:
圖 1-29:
圖1-29 左側(cè)圖(a)、(b)、(c)分別代表 Ni(111MBP/Ni(111) MTJs PC結(jié)構(gòu)的I-V曲線;APC結(jié)構(gòu)的I-V曲線;隨偏壓變化的TMR和SIE(插圖)。右側(cè)圖(d)、(e)、(f)分別代表 Ni(100)/MBP/Ni(100) MTJs PC結(jié)構(gòu)的I-V曲線;APC結(jié)構(gòu)的I-V曲線;隨偏壓變化的TMR和SIE(插圖)。
注意:Ni(100)/MBP/Ni(100) MTJs具有持續(xù)穩(wěn)定的TMR值
(2)結(jié)果分析:
對于Ni(111)/MBP/Ni(111) MTJs,電流沿著MBP的y (zigzag)方向;對于Ni(100)/MBP/Ni(100) MTJs,自旋電流沿著MBP的x (armchair)方向,見圖1-1(e,f,g)所示。圖1-2(a,b)和(d,e)分別給出了偏壓0~100mV下Ni(111)/MBP/Ni(111)與Ni(100)/MBP/Ni(100)的自旋極化電流。對于Ni(111)和Ni(100)系統(tǒng),在偏壓0-70mV時(shí),總電流I_(PC,APC)隨著偏壓線性增加;當(dāng)偏壓大于70mV時(shí),隨著偏壓增加,I_(PC,APC)呈現(xiàn)非線性的快速增加。圖2-2(a,b)表明Ni(111)系統(tǒng)的PC和APC結(jié)構(gòu)的自旋極化電流I_↓總是大于I_↑。但對于Ni(100)系統(tǒng),PC結(jié)構(gòu)的自旋極化電流I_↓>I_↑,如圖2-2(d);APC結(jié)構(gòu)的自旋極化電流I_↓
(1)作圖和分析:PDOS
(根據(jù)3.2.2 輸運(yùn)計(jì)算中投影態(tài)密度的結(jié)果,進(jìn)行數(shù)據(jù)繪圖)得到PDOS圖如下:
圖 1-30:
圖1-30 平衡態(tài)下:Ni(111)/MBP/Ni(111) MTJs平行結(jié)構(gòu)的投影態(tài)密度(PDOS) 橫坐標(biāo)為輸運(yùn)方向y(?),縱坐標(biāo)為能量Energy(eV),右上方為豎直方向的條形顏色刻度,藍(lán)色虛線為費(fèi)米面。
(2)結(jié)果分析:
由圖1-30知,在沿輸運(yùn)方向大約10?至30?的范圍內(nèi),深藍(lán)色區(qū)域?yàn)镸BP的能隙禁區(qū),表明此區(qū)域MBP形成輸運(yùn)勢壘;從物理圖像上看,左電極中自旋向上的電子為少數(shù)自旋態(tài)電子(態(tài)密度小),左電極中自旋向下的電子為多數(shù)自旋態(tài)電子(態(tài)密度大)。當(dāng)鎳電極的磁化方向平行時(shí),即PC結(jié)構(gòu),則一個(gè)電極中多數(shù)自旋子帶的電子將進(jìn)入另一個(gè)電極中的多數(shù)自旋子帶的空態(tài),而少數(shù)自旋子帶的電子也從這個(gè)電極進(jìn)入另一個(gè)電極的少數(shù)自旋子帶的空態(tài)。可以理解,當(dāng)磁化取向平行排列時(shí),電極中的多數(shù)自旋子帶與一個(gè)高密度的空態(tài)相遇,故電阻低。磁化平行排列電阻小,形成低阻態(tài);相反,磁化反平行排列電阻高,形成高阻態(tài)。總之,電子的輸運(yùn)一方面依賴于MBP勢壘的隧穿過程,另一方面又與兩端磁性金屬的磁化相對取向有關(guān)。
(1)作圖和分析:某一能量范圍下的電子透射譜(根據(jù)2.2.2 輸運(yùn)計(jì)算中電子透射譜的結(jié)果,進(jìn)行提取數(shù)據(jù)并繪圖)
圖 1-31:
圖1-31 平衡態(tài)下:PC和APC結(jié)構(gòu)的電子透射譜,費(fèi)米能級在0處 (a)為Ni(111)/MBP/Ni(111) MTJ;(b)為Ni(100)/MBP/Ni(100) MTJ
(2)結(jié)果分析:
為了進(jìn)一步深入理解TMR和SIE,我們分析了平衡態(tài)下的電子透射譜。圖1-31(a)和(b)分別為平衡態(tài)下,Ni(111)/MBP/Ni(111)及Ni(100)/MBP/Ni(100) MTJs的PC和APC結(jié)構(gòu)的電子透射譜。由于這兩個(gè)系統(tǒng)的結(jié)構(gòu)具有對稱性,因此APC結(jié)構(gòu)的自旋向上和自旋向下的電子透射譜系數(shù)是相等的,所以在圖1-31(a)和(b)中APC結(jié)構(gòu)的電子透射譜系數(shù)只顯示了一條曲線。對于PC結(jié)構(gòu),分別畫出了自旋向上和自旋向下的電子透射譜系數(shù)。從圖1-31中可看出,費(fèi)米能級處的自旋向下的電子要比自旋向上的電子對透射譜系數(shù)貢獻(xiàn)的多,從而導(dǎo)致平衡態(tài)下,兩種系統(tǒng)具有相對較大的TMR和SIE值(PC結(jié)構(gòu)), 如圖1-31(c)和(f))。由于系統(tǒng)結(jié)構(gòu)具有對稱性,所以在平衡態(tài)下兩個(gè)系統(tǒng)APC結(jié)構(gòu)的SIE為0。圖2-31的電子透射譜的分析方法與圖1-31PDOS的分析方法基本一致, 如下:對于PC結(jié)構(gòu),MTJs的鎳電極中自旋向下的電子態(tài)密度大,故自旋向下通道的電子透射譜系數(shù)大。對于APC結(jié)構(gòu),由于系統(tǒng)結(jié)構(gòu)的對稱性,MTJs的鎳電極中自旋向上和自旋向下的電子態(tài)密度相同,故自旋向上和自旋向下通道的電子透射譜系數(shù)相等。
本章采用NEGF-DFT的計(jì)算方法,研究了鎳/黑磷/鎳隧道結(jié)的非平衡態(tài)的電輸運(yùn)性質(zhì)。我們計(jì)算了外置偏壓下的TMR、SIE、自旋極化電流、電荷電流、電子透射譜系數(shù)等。研究結(jié)果發(fā)現(xiàn):(1) 在0~70mV偏壓范圍內(nèi),Ni(100)/MBP/Ni(100) MTJs具有穩(wěn)定的高TMR和高SIE值,其中TMR≈40% 。對于PC結(jié)構(gòu),SIE≈60%。(2) Ni(100)/MBP/Ni(100)比Ni(111)/MBP/Ni(111)結(jié)構(gòu)具有更好的自旋極化輸運(yùn)特性,這表明隧道結(jié)的界面結(jié)構(gòu)對體系的TMR、SIE有重要影響。總之,Ni(100)/MBP/Ni(100) 比Ni(111)/MBP/Ni(111) 結(jié)構(gòu)更適合應(yīng)用于自旋電子器件。
審核編輯 :李倩
1.3.3 總結(jié)
-
電極
+關(guān)注
關(guān)注
5文章
829瀏覽量
27318 -
模擬器件
+關(guān)注
關(guān)注
2文章
107瀏覽量
23243
原文標(biāo)題:產(chǎn)品教程|Nanodcal自旋器件(鎳/黑磷/鎳隧道結(jié)的電輸運(yùn)02)
文章出處:【微信號:hzwtech,微信公眾號:鴻之微】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
基于Rashba自旋軌道相互作用的非常規(guī)超導(dǎo)態(tài)和鐵磁序
自旋憶阻器:最像大腦的存儲(chǔ)器
如何測試PROM器件的性能
自旋極化:開創(chuàng)半導(dǎo)體器件設(shè)計(jì)的新路徑
![<b class='flag-5'>自旋</b>極化:開創(chuàng)半導(dǎo)體<b class='flag-5'>器件</b>設(shè)計(jì)的新路徑](https://file1.elecfans.com/web1/M00/F5/46/wKgZoWc6sfaAaVzJAACJIuX-254618.png)
ATA-2022B高壓放大器在Lamb波中彈性波自旋調(diào)控研究中的應(yīng)用
![ATA-2022B高壓放大器在Lamb波中彈性波<b class='flag-5'>自旋</b>調(diào)控研究中的應(yīng)用](https://file1.elecfans.com/web1/M00/F3/70/wKgZoWcXU5-ABknYAAAd5RvGtTE000.png)
成像器件的工作原理是什么
TDK成功研發(fā)出用于神經(jīng)形態(tài)設(shè)備的自旋憶阻器
射頻器件有哪些?測量射頻器件的標(biāo)準(zhǔn)化流程是什么?
![射頻<b class='flag-5'>器件</b>有哪些?測量射頻<b class='flag-5'>器件</b>的標(biāo)準(zhǔn)化流程是什么?](https://file1.elecfans.com/web2/M00/05/3D/wKgZombYFO2AFhYcAAB63ZSB4Sg524.png)
AM263x器件命名規(guī)則和子集器件
![AM263x<b class='flag-5'>器件</b>命名規(guī)則和子集<b class='flag-5'>器件</b>](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
互斥鎖和自旋鎖的實(shí)現(xiàn)原理
自旋鎖和互斥鎖的使用場景是什么
英特爾在可擴(kuò)展硅基量子處理器領(lǐng)域取得重大突破
鎖相放大器OE1022應(yīng)用在二維鐵磁自旋相關(guān)性的測量
![鎖相放大器OE1022應(yīng)用在二維鐵磁<b class='flag-5'>自旋</b>相關(guān)性的測量](https://file1.elecfans.com//web2/M00/C8/73/wKgZomYcWamABXAIAAJAFFJmrsc348.png)
MM32自旋系列電機(jī)專用 24V電機(jī)驅(qū)動(dòng)DK板功能介紹
通過TriVista高分辨率光譜測量系統(tǒng)測量量子材料的精細(xì)結(jié)構(gòu)和自旋相互作用
![通過TriVista高分辨率光譜測量系統(tǒng)測量量子材料的精細(xì)結(jié)構(gòu)和<b class='flag-5'>自旋</b>相互作用](https://file1.elecfans.com//web2/M00/C4/95/wKgaomXuNYCANGE5AAE2PX44Emg411.png)
評論