衡阳派盒市场营销有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

說透游戲中常用的兩種隨機算法

算法與數據結構 ? 來源:labuladong ? 作者:labuladong ? 2022-11-09 11:17 ? 次閱讀

沒事兒的時候我喜歡玩玩那些經典的 2D 網頁小游戲,我發現很多游戲都要涉及地圖的隨機生成,比如掃雷游戲中地雷的位置應該是隨機分布的:

e7b652ca-5fdc-11ed-8abf-dac502259ad0.jpg

再比如經典炸彈人游戲,障礙物的位置也是有一定隨機性的:

e7d12dac-5fdc-11ed-8abf-dac502259ad0.jpg

這些 2D 游戲相較現在的大型 3D 游戲雖然看起來有些簡陋,但依然用到很多有趣算法技巧,本文就來深入研究一下地圖的隨機生成算法。

2D 游戲的地圖肯定可以抽象成一個二維矩陣,就拿掃雷舉例吧,我們可以用下面這個類表示掃雷的棋盤:

classGame{
intm,n;
//大小為m*n的二維棋盤
//值為true的地方代表有雷,false代表沒有雷
boolean[][]board;
}

如果你想在棋盤中隨機生成k個地雷,也就是說你需要在board中生成k個不同的(x, y)坐標,且這里面x, y都是隨機生成的。

對于這個需求,首先一個優化就是對二維矩陣進行「降維打擊」,把二維數組轉化成一維數組

classGame{
intm,n;
//長度為m*n的一維棋盤
//值為true的地方代表有雷,false代表沒有雷
boolean[]board;

//將二維數組中的坐標(x,y)轉化為一維數組中的索引
intencode(intx,inty){
returnx*n+y;
}

//將一維數組中的索引轉化為二維數組中的坐標(x,y)
int[]decode(intindex){
returnnewint[]{index/n,index%n};
}
}

這樣,我們只要在[0, m * n)中選取一個隨機數,就相當于在二維數組中隨機選取了一個元素。

但問題是,我們現在需要隨機選出k不同的位置放地雷。你可能說,那在[0, m * n)中選出來k個隨機數不就行了?

是的,但實際操作起來有些麻煩,因為你很難保證隨機數不重復。如果出現重復的隨機數,你就得再隨機選一次,直到找到k個不同的隨機數。

如果k比較小m * n比較大,那出現重復隨機數的概率還比較低,但如果km * n的大小接近,那么出現重復隨機數的概率非常高,算法的效率就會大幅下降。

那么,我們有沒有更好的辦法能夠在線性的時間復雜度解決這個問題?其實是有的,而且有很多種解決方案。

洗牌算法

第一個解決方案,我們可以換個思路,避開「在數組中隨機選擇k個元素」這個問題,把問題轉化成「如何隨機打亂一個數組」。

現在想隨機初始化k顆地雷的位置,你可以先把這k顆地雷放在board開頭,然后把board數組隨機打亂,這樣地雷不就隨機分布到board數組的各個地方了嗎?

洗牌算法,或者叫隨機亂置算法就是專門解決這個問題的,我們可以看下力扣第 384 題「打亂數組」:

e7eee2fc-5fdc-11ed-8abf-dac502259ad0.jpg

這個shuffle函數是算法的關鍵,直接看解法代碼吧:

classSolution{
privateint[]nums;
privateRandomrand=newRandom();

publicSolution(int[]nums){
this.nums=nums;
}

publicint[]reset(){
returnnums;
}

//洗牌算法
publicint[]shuffle(){
intn=nums.length;
int[]copy=Arrays.copyOf(nums,n);
for(inti=0;i//生成一個[i,n-1]區間內的隨機數
intr=i+rand.nextInt(n-i);
//交換nums[i]和nums[r]
swap(copy,i,r);
}
returncopy;
}

privatevoidswap(int[]nums,inti,intj){
inttemp=nums[i];
nums[i]=nums[j];
nums[j]=temp;
}
}

洗牌算法的時間復雜度是 O(N),而且邏輯很簡單,關鍵在于讓你證明為什么這樣做是正確的。排序算法的結果是唯一可以很容易檢驗的,但隨機亂置算法不一樣,亂可以有很多種,你怎么能證明你的算法是「真的亂」呢?

分析洗牌算法正確性的準則:產生的結果必須有n!種可能。這個很好解釋,因為一個長度為n的數組的全排列就有n!種,也就是說打亂結果總共有n!種。算法必須能夠反映這個事實,才是正確的。

有了這個原則再看代碼應該就容易理解了:

對于nums[0],我們把它隨機換到了索引[0, n)上,共有n種可能性;

對于nums[1],我們把它隨機換到了索引[1, n)上,共有n - 1種可能性;

對于nums[2],我們把它隨機換到了索引[2, n)上,共有n - 2種可能性;

以此類推,該算法可以生成n!種可能的結果,所以這個算法是正確的,能夠保證隨機性。

水塘抽樣算法

學會了洗牌算法,掃雷游戲的地雷隨機初始化問題就解決了。不過別忘了,洗牌算法只是一個取巧方案,我們還是得面對「在若干元素中隨機選擇k個元素」這個終極問題。

要知道洗牌算法能夠生效的前提是你使用數組這種數據結構,如果讓你在一條鏈表中隨機選擇k個元素,肯定不能再用洗牌算法來蒙混過關了。

再比如,假設我們的掃雷游戲中棋盤的長和寬非常大,已經不能在內存中裝下一個大小為m * nboard數組了,我們只能維護一個大小為k的數組記錄地雷的位置:

classGame{
//棋盤的行數和列數(非常大)
intm,n;
//長度為k的數組,記錄k個地雷的一維索引
int[]mines;

//將二維數組中的坐標(x,y)轉化為一維數組中的索引
intencode(intx,inty){
returnx*n+y;
}

//將一維數組中的索引轉化為二維數組中的坐標(x,y)
int[]decode(intindex){
returnnewint[]{index/n,index%n};
}
}

這樣的話,我們必須想辦法在[0, m*n)中隨機選取k個不同的數字了。

這就是常見的隨機抽樣場景,常用的解法是水塘抽樣算法(Reservoir Sampling)。水塘抽樣算法是一種隨機概率算法,會者不難,難者不會。

我第一次見到這個算法問題是谷歌的一道算法題:給你一個未知長度的單鏈表,請你設計一個算法,只能遍歷一次,隨機地返回鏈表中的一個節點。

這里說的隨機是均勻隨機(uniform random),也就是說,如果有n個元素,每個元素被選中的概率都是1/n,不可以有統計意義上的偏差。

一般的想法就是,我先遍歷一遍鏈表,得到鏈表的總長度n,再生成一個[0,n-1)之間的隨機數為索引,然后找到索引對應的節點。但這不符合只能遍歷一次鏈表的要求。

這個問題的難點在于隨機選擇是「動態」的,比如說你現在你已經遍歷了 5 個元素,你已經隨機選取了其中的某個元素a作為結果,但是現在再給你一個新元素b,你應該留著a還是將b作為結果呢?以什么邏輯做出的選擇,才能保證你的選擇方法在概率上是公平的呢?

先說結論,當你遇到第i個元素時,應該有1/i的概率選擇該元素,1 - 1/i的概率保持原有的選擇??创a容易理解這個思路:

/*返回鏈表中一個隨機節點的值*/
intgetRandom(ListNodehead){
Randomr=newRandom();
inti=0,res=0;
ListNodep=head;
//while循環遍歷鏈表
while(p!=null){
i++;
//生成一個[0,i)之間的整數
//這個整數等于0的概率就是1/i
if(0==r.nextInt(i)){
res=p.val;
}
p=p.next;
}
returnres;
}

對于概率算法,代碼往往都是很淺顯的,但是這種問題的關鍵在于證明,你的算法為什么是對的?為什么每次以1/i的概率更新結果就可以保證結果是平均隨機的?

我們來證明一下,假設總共有n個元素,我們要的隨機性無非就是每個元素被選擇的概率都是1/n對吧,那么對于第i個元素,它被選擇的概率就是:

e80b8b14-5fdc-11ed-8abf-dac502259ad0.png

i個元素被選擇的概率是1/i,在第i+1次不被替換的概率是1 - 1/(i+1),在第i+2次不被替換的概率是1 - 1/(i+2),以此類推,相乘的結果是第i個元素最終被選中的概率,也就是1/n。因此,該算法的邏輯是正確的。

同理,如果要在單鏈表中隨機選擇k個數,只要在第i個元素處以k/i的概率選擇該元素,以1 - k/i的概率保持原有選擇即可。代碼如下:

/*返回鏈表中k個隨機節點的值*/
int[]getRandom(ListNodehead,intk){
Randomr=newRandom();
int[]res=newint[k];
ListNodep=head;

//前k個元素先默認選上
for(inti=0;inull;i++){
res[i]=p.val;
p=p.next;
}

inti=k;
//while循環遍歷鏈表
while(p!=null){
i++;
//生成一個[0,i)之間的整數
intj=r.nextInt(i);
//這個整數小于k的概率就是k/i
if(jreturnres;
}

對于數學證明,和上面區別不大:

e81eac12-5fdc-11ed-8abf-dac502259ad0.png

雖然每次更新選擇的概率增大了k倍,但是選到具體第i個元素的概率還是要乘1/k,也就回到了上一個推導。

類似的,回到掃雷游戲的隨機初始化問題,我們可以寫一個這樣的sample抽樣函數:

//在區間[lo,hi)中隨機抽取k個數字
int[]sample(intlo,inthi,intk){
Randomr=newRandom();
int[]res=newint[k];

//前k個元素先默認選上
for(inti=0;iinti=k;
//while循環遍歷數字區間
while(i//生成一個[0,i)之間的整數
intj=r.nextInt(i);
//這個整數小于k的概率就是k/i
if(j1;
}
}
returnres;
}

這個函數能夠在一定的區間內隨機選擇k個數字,確保抽樣結果是均勻隨機的且只需要 O(N) 的時間復雜度。

蒙特卡洛驗證法

上面講到的洗牌算法和水塘抽樣算法都屬于隨機概率算法,雖然從數學上推導上可以證明算法的思路是正確的,但如果你筆誤寫出 bug,就會導致概率上的不均等。更神奇的是,力扣的判題機制能夠檢測出這種概率錯誤。

那么最后我就來介紹一種方法檢測隨機算法的正確性:蒙特卡洛方法。我猜測力扣的判題系統也是利用這個方法來判斷隨機算法的正確性的。

記得高中有道數學題:往一個正方形里面隨機打點,這個正方形里緊貼著一個圓,告訴你打點的總數和落在圓里的點的數量,讓你計算圓周率。

e8484e00-5fdc-11ed-8abf-dac502259ad0.png

這其實就是利用了蒙特卡羅方法:當打的點足夠多的時候,點的數量就可以近似代表圖形的面積。結合面積公式,可以很容易通過正方形和圓中點的數量比值推出圓周率的。

當然,打的點越多,算出的圓周率越準確,充分體現了大力出奇跡的道理。

比如,我們可以這樣檢驗水塘抽樣算法sample函數的正確性:

publicstaticvoidmain(String[]args){
//在[12,22)中隨機選3個數
intlo=12,hi=22,k=3;
//記錄每個元素被選中的次數
int[]count=newint[hi-lo];
//重復10萬次
intN=1000000;
for(inti=0;iint[]res=sample(lo,hi,k);
for(intelem:res){
//對隨機選取的元素進行記錄
count[elem-lo]++;
}
}
System.out.println(Arrays.toString(count));
}

這段代碼的輸出如下:

[300821,299598,299792,299198,299510,300789,300022,300326,299362,300582]

當然你可以做更細致的檢查,不過粗略看看,各個元素被選中的次數大致是相同的,這個算法實現的應該沒啥問題。

對于洗牌算法中的shuffle函數也可以采取類似的驗證方法,我們可以跟蹤某一個元素x被打亂后的索引位置,如果x落在各個索引的次數基本相同,則說明算法正確,你可以自己嘗試實現,我就不貼代碼驗證了。

拓展延伸

到這里,常見的隨機算法就講完了,簡單總結下吧。

洗牌算法主要用于打亂數組,比如我們在快速排序詳解及運用中就用到了洗牌算法保證快速排序的效率。

水塘抽樣算法的運用更加廣泛,可以在序列中隨機選擇若干元素,且能保證每個元素被選中的概率均等。

對于這些隨機概率算法,我們可以用蒙特卡洛方法檢驗其正確性。

最后留幾個拓展題目:

1、本文開頭講到了將二維數組坐標(x, y)轉化成一維數組索引的技巧,那么你是否有辦法把三維坐標(x, y, z)轉化成一維數組的索引呢?

2、如何對帶有權重的樣本進行加權隨機抽???比如給你一個數組w,每個元素w[i]代表權重,請你寫一個算法,按照權重隨機抽取索引。比如w = [1,99],算法抽到索引 0 的概率是 1%,抽到索引 1 的概率是 99%,答案見我的這篇文章

3、實現一個生成器類,構造函數傳入一個很長的數組,請你實現randomGet方法,每次調用隨機返回數組中的一個元素,多次調用不能重復返回相同索引的元素。要求不能對該數組進行任何形式的修改,且操作的時間復雜度是 O(1),答案見我的這篇文章

審核編輯 :李倩


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4630

    瀏覽量

    93355
  • 生成器
    +關注

    關注

    7

    文章

    319

    瀏覽量

    21128
  • 數組
    +關注

    關注

    1

    文章

    417

    瀏覽量

    26028

原文標題:說透游戲中常用的兩種隨機算法

文章出處:【微信號:TheAlgorithm,微信公眾號:算法與數據結構】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    AMC1204有兩種封裝,SOIC-8和SOIC-16,功能一樣嗎?為什么要推出兩種封裝?

    呢?AMC1204,AMC1304這樣做有什么好處嗎? 2、AMC1204有兩種封裝,SOIC-8和SOIC-16,功能一樣嗎?為什么要推出兩種封裝?
    發表于 12-27 07:22

    蘋果正在打造專為iOS用戶設計的游戲中

     10月23日,據國外媒體報道,蘋果公司正致力于開發一款新型應用程序,意在將App Store與Game Center的功能融為一體,打造一個專為iOS用戶設計的游戲中心。
    的頭像 發表于 10-23 16:00 ?948次閱讀

    噪聲傳導的兩種模式

    噪聲傳導有兩種模式,一為差模傳導,一為共模傳導。
    的頭像 發表于 10-15 11:33 ?381次閱讀
    噪聲傳導的<b class='flag-5'>兩種</b>模式

    Linux應用層控制外設的兩種不同的方式

    眾所周知,linux下一切皆文件,那么應用層如何控制硬件層,同樣是通過 文件I/O的方式來實現的,那么應用層控制硬件層通常有兩種方式。
    的頭像 發表于 10-05 19:03 ?702次閱讀
    Linux應用層控制外設的<b class='flag-5'>兩種</b>不同的方式

    晶閘管的阻斷狀態有兩種是什么

    晶閘管(Thyristor)是一半導體器件,具有單向導電性,廣泛應用于電力電子領域。晶閘管的阻斷狀態有兩種:正向阻斷狀態和反向阻斷狀態。以下是對這兩種阻斷狀態的分析。 正向阻斷狀態 正向阻斷狀態
    的頭像 發表于 08-14 16:49 ?838次閱讀

    華為設備中常用的RIP命令及其應用

    RIP(Routing Information Protocol,路由信息協議)是一應用廣泛的距離矢量路由協議,尤其適用于中小型網絡。本文將詳細介紹在華為設備中常用的RIP命令及其應用,以幫助網絡管理員和工程師更好地理解和配置RIP協議。
    的頭像 發表于 08-12 18:10 ?916次閱讀

    電樞繞組有哪兩種形式,最常用的是哪種?

    槽中的繞組形式。它的形狀類似于波浪,因此被稱為波繞組。 波繞組的分類 波繞組可以分為單波繞組和復波繞組兩種。 (1)單波繞組:單波繞組是指每個線圈只占據一個電樞槽,線圈的端分別連接到電樞的個端部。單波繞組的特點
    的頭像 發表于 07-25 17:35 ?2086次閱讀

    wdm設備的兩種傳輸方式

    系統中,有多種傳輸方式,其中最常見的兩種是密集波分復用(DWDM)和粗波分復用(CWDM)。 1. 密集波分復用(DWDM) 1.1 DWDM技術原理 密集波分復用(Dense Wavelength Division Multiplexing,簡稱DWDM)是一將多個不
    的頭像 發表于 07-18 09:45 ?548次閱讀

    數控系統常用兩種插補功能有哪些

    ,通過數學方法計算出這些點之間的中間值,以實現連續曲線的生成。在數控系統中,常用兩種插補功能是線性插補和圓弧插補。 一、線性插補 線性插補是數控系統中最基本的插補方式,它主要用于實現直線段的加工。線性插補
    的頭像 發表于 07-01 11:13 ?2086次閱讀

    PCBA加工中常見的兩種焊接方式詳解

    ,在PCBA行業中經常被使用。接下來深圳PCBA加工廠家為大家詳細介紹PCBA加工手工焊接的兩種方式,為您揭秘行業內的技術細節。 PCBA加工過程中常用焊接方式 第一方式是傳統手工焊接。這種方式主要依靠技術工人的手動操作進行焊
    的頭像 發表于 06-14 09:18 ?625次閱讀

    輕松搞懂傳和非傳的區別

    傳和非傳是數據通信中的兩種不同模式,各自有其適用場景和優勢。傳模式簡單、高效,適用于數據完整性要求高的場景;非傳模式則通過數據處理提
    的頭像 發表于 06-05 12:03 ?1w次閱讀
    輕松搞懂<b class='flag-5'>透</b>傳和非<b class='flag-5'>透</b>傳的區別

    充電樁為什么有直流與交流兩種接口?

    充電樁設計有直流(DC)和交流(AC)兩種接口,主要是為了適應不同類型的電動汽車(EV)充電需求以及電池的充電特性。
    的頭像 發表于 04-30 15:33 ?1792次閱讀

    GYFTA、GYFTY兩種光纜的區別

    GYFTA和GYFTY兩種光纜的區別主要在于它們的結構和應用場景。 GYFTA光纜是一室外非金屬加強芯松套管層絞聚乙烯粘連鋁帶護套光纜。這種光纜的結構特點是它使用了非金屬加強芯,并且光纜的外護套
    的頭像 發表于 03-26 10:26 ?2185次閱讀

    Xbox應用新增“游戲中心”功能

    微軟 Xbox 體驗高級產品經理 Dylan Meade表示,“游戲中心”便于玩家追蹤游戲進展,發現游戲最新內容和擴展包,與友人聯機競技,接收開發商的最新新聞等。
    的頭像 發表于 02-27 14:02 ?773次閱讀

    gis中常用的空間分析方法

    GIS中常用的空間分析方法 GIS(地理信息系統)是一用于收集、存儲、處理、分析和展示地理數據的技術。空間分析是GIS的核心部分,它包括一系列方法和技術,用來研究地理空間數據之間的關系和模式。本文
    的頭像 發表于 02-25 13:44 ?6053次閱讀
    百家乐官网怎样看点| 百家乐园太阳| 狮威百家乐官网娱乐平台| 投注网| 百家乐娱乐平台真人娱乐平台| 自贡百家乐官网娱乐场开户注册| 白金国际| 百家乐追号软件| 网上百家乐作弊不| 南京百家乐官网在哪| 奇博网上娱乐| 免费百家乐统计工具| 精英百家乐现金网| 高档百家乐官网桌| 鲁甸县| 大发888线上娱乐城二十一点| 哪里有百家乐赌博网站| 百家乐官网游戏解码器| 百家乐官网的必赢术| 大发888网址是什么| 百家乐五湖四海娱乐网| 做生意布局风水| 百家乐官网太阳城| 沭阳县| 博彩网址大全| 澳门百家乐经| 百家乐娱乐城博彩正网| 黄金城百家乐官网下载| 百家乐官网顶| 南溪县| 新葡京娱乐城开户| 威尼斯人娱乐城玩百家乐 | 百家乐官网游戏论坛| 娱乐城金赞| 东方太阳城三期琴湖湾| 广东百家乐官网网| 澳门百家乐官网搏牌规则| 曲麻莱县| 百家乐电脑游戏机投注法实例| 凯斯百家乐官网的玩法技巧和规则 | 大发888真人网址的微博|