衡阳派盒市场营销有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

晶格失配對InAs基室溫中波紅外探測器性能的影響

MEMS ? 來源:紅外芯聞 ? 2023-05-23 09:31 ? 次閱讀

與HgCdTe器件相比,InAs基材料在室溫下其載流子遷移率和俄歇復合系數(shù)均有明顯優(yōu)勢,并且InAs基器件在勢壘層材料上有更多的選擇,如AlGaSb、AlAsSb、InAsP、InAlAsSb、InAsSbP等,2014年紅外領域著名專家波蘭院士安東尼教授對中波紅外不同探測材料體系做了對比,InAs基探測器在3~5 μm中波室溫探測中具有明顯優(yōu)勢。

據(jù)麥姆斯咨詢報道,近期,上海理工大學和中國科學院上海技術物理研究所的科研團隊在《激光與紅外》期刊上發(fā)表了以“晶格失配對InAs基室溫中波紅外探測器性能的影響”為主題的文章。該文章第一作者為段永飛,主要從事新型紅外探測材料與器件方面的研究工作;通訊作者為上海理工大學陳澤中副教授,主要從事金屬塑性成形CAE與模具CAD/CAM研究等方面的研究工作。

本文研究采用液相外延技術(LPE)生長了InAs基室溫紅外探測器件材料,通過光學顯微鏡、掃描電子顯微鏡、X射線衍射儀分析了外延材料表面形貌、截面形貌與晶格失配的關系。

實驗過程

InAs基紅外探測器制備

InAs基器件材料的制備采用液相外延法,使用常規(guī)水平滑動石墨舟技術進行生長(圖1為生長工藝曲線)。外延生長工藝模式采用步冷法,當溫度降到生長溫度550 ℃時,抽動放置襯底的石墨滑板使InAs襯底依次與熔源材料接觸,進行外延層的生長,最終得到InAs基多層薄膜結構器件材料。

2a022f3e-f8f6-11ed-90ce-dac502259ad0.png

圖1 InAs基器件液相外延生長工藝曲線

采用常規(guī)光刻和濕法刻蝕工藝)制作直徑200 μm臺面器件(如圖2所示)。在刻蝕出臺面結構前,通過勻膠、光刻、顯影工藝使用AZ5214光刻膠作為掩膜層將器件臺面保護住。采用濕法刻蝕工藝將臺面結構以外的外延材料刻蝕掉,刻蝕停止在p型InAsSbP阻擋層。最后,在p型摻雜的InAsSbP阻擋層上和n型摻雜InAsSbP窗口層上利用電子束蒸發(fā)做出歐姆接觸Ti/Au電極。

2a1c1d68-f8f6-11ed-90ce-dac502259ad0.png

圖2 pBin型InAs器件結構示意圖

器件性能表征

采用X射線衍射儀(XRD)對樣品的結構特性和晶體質量進行表征和分析,測試電壓為40 kV,電流為40 mA。采用掃描電子顯微鏡(SEM)對樣品的截面進行觀察,測試電壓為10 kV。采用I-V測試探針臺測試樣品的I-V曲線獲得器件動態(tài)電阻。器件的室溫探測率由歸一化光電流能譜與黑體響應下探測器光電流相結合得到。采用傅里葉紅外光譜儀-獲得器件光電流能譜。采用黑體響應測試獲得探測器光電流,黑體溫度為900 K,調制頻率1000 Hz,黑體出光孔徑0.8 cm,黑體與探測器的距離為30 cm,探測器輸出的光電流信號經前置放大器放大并轉化為電壓信號后,輸入鎖相放大器解調后得到。在光電流能譜及黑體響應測試中,探測器均為零偏壓狀態(tài)。

結果與討論

InAsSbP外延薄膜

通過調整液相外延生長參數(shù)如液相組分、生長溫度,獲得了一系列晶格失配不同的InAsSbP外延薄膜。圖3所示為200×放大倍率下的光學顯微鏡觀察的InAsSbP外延薄膜S1~S6樣品表面形貌圖。采用XRD對InAsSbP外延薄膜的晶格常數(shù)和晶體質量進行表征。搖擺曲線的半高寬(FWHM)越窄,單晶的晶格質量越好。圖4為S1~S6樣品的XRD(400)衍射峰和S1~S6樣品InAsSbP外延薄膜的(400)搖擺曲線,外延薄膜與襯底之間的晶格失配通過XRD測得的衍射峰角度代入布拉格方程進行計算。

2a2dc644-f8f6-11ed-90ce-dac502259ad0.png

圖3 S1~S6樣品光學顯微鏡表面形貌圖

2a50a628-f8f6-11ed-90ce-dac502259ad0.png

圖4 S1~S6樣品XRD圖及InAsSbP外延膜(400)搖擺曲線圖

圖3和圖4表明,InAsSbP外延層的表面形貌和外延層與襯底之間的晶格失配存在聯(lián)系。S4樣品在室溫下與InAs襯底的晶格失配為0.22%,外延層表面光亮均勻,搖擺曲線顯示其半高寬最窄,與InAs襯底的搖擺曲線半高寬相當,結晶質量較高。S1和S2樣品顯示,樣品晶格失配在0.1%左右及以下的微正失配時,外延層表面密布點狀缺陷。當晶格失配由0.1%左右繼續(xù)減小至0.1%以下的微小正失配時,點狀缺陷密度迅速增加,表面形貌變差,InAsSbP外延層的搖擺曲線半高寬也明顯寬化。

張永剛等人早期在InAs襯底上使用液相外延技術生長InAsSbP外延層中也有類似情況出現(xiàn),這可能是因為InAs、InSb和InP的熱膨脹系數(shù)不同。當晶格失配在0.3%左右繼續(xù)往正失配方向增加時,“cross-hatch”形貌開始顯現(xiàn),這是液相外延生長過程中一種典型形貌,與位錯輔助的應變弛豫和表面臺階流動導致的外延薄膜表面的高低起伏有關。晶格失配增加,“cross-hatch”形貌明顯加重,溝壑狀紋路出現(xiàn),說明材料失配位錯非常嚴重,S5和S6樣品搖擺曲線的半高寬相比S4樣品也有明顯寬化,晶格質量變差。

InAs紅外探測器件

選取InAsSbP外延層的三種典型表面形貌,生長對應晶格失配0.09%、0.21%、0.40%的InAsSbP外延層組分pBin結構器件,得到樣品D1、D2、D3。

采用掃描電子顯微鏡對各樣品的截面進行觀察。觀察前,將樣品沿(100)晶向解理,在A-B腐蝕液中腐蝕3 s。由于樣品各層界面處缺陷相比各層材料內部更多,腐蝕速度更快,更容易被刻蝕,因此腐蝕后界面處缺陷更加明顯,便于觀察到更清晰的界面。各樣品的SEM截面形貌如圖5所示。樣品D1和D3在相同的腐蝕時間下界面處腐蝕很嚴重,且器件樣品的耗盡區(qū)即p型InAsSbP阻擋層與本征吸收層之間界面處在腐蝕后相較其他區(qū)域發(fā)亮并且寬化,缺陷尤為嚴重。樣品D2的SEM截面形貌各外延層間界面平整且清晰,由此可以看出,樣品D2各層間缺陷較少,材料質量較高。由此可以判斷,晶格失配過大和過小都會導致材料內部缺陷增多,尤其是不同外延層間界面處缺陷密度增加明顯。晶格失配在0.21%左右的InAsSbP/InAs系統(tǒng)材料內部缺陷較少,晶體質量較好,這與高分辨X射線衍射譜得到的結果一致。

2a6a172a-f8f6-11ed-90ce-dac502259ad0.png

圖5 D1、D2、D3器件SEM截面圖

將樣品D1、D2、D3制備成直徑為200 μm的臺面型紅外探測器器件。圖6所示為樣品D1、D2、D3制備出的臺面型紅外探測器的側壁SEM圖。同通過觀察SEM截面分析外延層晶體質量原理類似,器件制備過程中的濕法刻蝕工藝也會使材料內部的缺陷擴大。D1和D3樣品出現(xiàn)明顯側蝕情況,且D1樣品更為嚴重。對比之下,D2樣品表面平整干凈,臺面形狀規(guī)則。D2樣品材料內部缺陷較少,晶體質量較好,和高分辨X射線衍射譜得到的結果一致。

2a8bcfdc-f8f6-11ed-90ce-dac502259ad0.png

圖6 D1、D2、D3器件側壁SEM圖

圖7為D1、D2、D3樣品制備出的臺面型紅外探測器的I-V特性曲線。D2樣品p-n結特性明顯,反向偏壓100 mV時漏電流在三個樣品中最低,在反向偏壓700 mV時仍未出現(xiàn)明顯漏電。D1樣品在反向偏壓100 mV左右時,p-n結開始出現(xiàn)明顯漏電,繼續(xù)增大反向偏壓,漏電流急劇增大。D3樣品在處于與D1樣品相同反向偏壓時漏電流比D1樣品稍小些,但也在反向偏壓200 mV時出現(xiàn)明顯漏電。對于pBin結型探測器,其耗盡區(qū)位于勢壘阻擋層與本征吸收層界面處,零偏電壓下,p-n結處于熱平衡狀態(tài),耗盡區(qū)中非平衡載流子的產生速率等同于復合速率,附加偏壓后,耗盡區(qū)內部缺陷密度如果較大,雜質和缺陷將形成大量的載流子產生復合中心,導致器件的產生復合電流大幅增加。對比三個晶格失配不同的樣品,晶格失配在0.21%的器件樣品D2暗電流水平最低。

2aa9f566-f8f6-11ed-90ce-dac502259ad0.png

圖7 D1、D2、D3器件I-V曲線

對D2樣品臺面型紅外探測器室溫探測性能進行了測試。D2樣品臺面型紅外探測器的室溫光學響應率和探測率如圖8所示。900 K黑體輻照下,器件室溫下截止波長為3.5 μm,探測率D*為6.8×10? cm·Hz1/2·W?1,這一性能和國際上紅外探測器領軍企業(yè)美國Teleyne Judson Techologies(截止波長3.60 μm,室溫探測率2.5~3.7×10? cm·Hz1/2·W?1)和日本濱松株式會社(截止波長3.65 μm,室溫探測率4.5×10? cm·Hz1/2·W?1)在售的商用InAs基紅外探測器處于同一水平。

2afd2baa-f8f6-11ed-90ce-dac502259ad0.jpg

2b1a6be8-f8f6-11ed-90ce-dac502259ad0.png

圖8 D2器件室溫光學響應率圖及探測率圖

結論

本文采用液相外延技術制備了以InAsSbP材料為器件阻擋層和窗口層材料的InAs基紅外探測器,研究了InAsSbP/InAs系統(tǒng)的晶格失配對InAs基紅外探測器性能的影響。通過對一系列晶格失配不同的InAsSbP外延薄膜分析發(fā)現(xiàn),不恰當?shù)木Ц袷鋾斐蒊nAsSbP外延層缺陷增多,結晶質量下降。確定出了晶格失配在0.22%左右的InAsSbP外延層晶體質量較好,采用0.22%左右晶格失配的方案制備出的器件暗電流水平較低。通過對InAsSbP/InAs系統(tǒng)晶格失配的研究,制備出了InAs基紅外探測器件,并測試得出室溫下截止波長為3.5 μm,探測率D*為6.8×10? cm·Hz1/2·W?1,室溫探測率已達到較高水平。





審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 紅外探測器
    +關注

    關注

    5

    文章

    290

    瀏覽量

    18157
  • 光譜儀
    +關注

    關注

    2

    文章

    978

    瀏覽量

    30929
  • XRD
    XRD
    +關注

    關注

    0

    文章

    133

    瀏覽量

    9131
  • LPe
    LPe
    +關注

    關注

    0

    文章

    4

    瀏覽量

    8763

原文標題:晶格失配對InAs基室溫中波紅外探測器性能的影響

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    紅外光束煙霧探測器

    光束煙感電子軟件設計 反射光束感煙探測器,內置激光指針和數(shù)字指南,設計成人性化的認準方法。 內置微處理,可自我診斷和監(jiān)視內部故障。 支持安裝距離:8~160米。
    發(fā)表于 12-16 18:12

    全場景紅外光柵-智能紅外入侵探測器

    入侵探測器。 全場景紅外光柵由多光束發(fā)射機+多光束接收機配對組成,面對面安裝,無需連接同步線,采用領先的智能跳頻和智能光譜識別技術,以及多種抗誤報抗干擾技術組合,用戶可以根據(jù)不同現(xiàn)場環(huán)境,任意選擇多種報警條件
    的頭像 發(fā)表于 11-20 09:28 ?294次閱讀
    全場景<b class='flag-5'>紅外</b>光柵-智能<b class='flag-5'>紅外</b>入侵<b class='flag-5'>探測器</b>

    被動紅外探測器的特點和安裝使用要求

    被動紅外探測器是一種采用被動紅外方式,以達到安保報警功能的探測器。其特點和安裝使用要求如下: 特點 被動接收紅外輻射 :
    的頭像 發(fā)表于 09-20 11:43 ?970次閱讀

    被動紅外探測器接線方法

    被動紅外探測器(Passive Infrared Detector,簡稱PIR)是一種利用人體發(fā)出的紅外輻射來檢測人體移動的傳感。它廣泛應用于家庭、辦公室、商場等場所的安全監(jiān)控系統(tǒng)中
    的頭像 發(fā)表于 09-20 11:40 ?682次閱讀

    被動紅外探測器與主動紅外探測器的原理比較

    被動紅外探測器(Passive Infrared Detector, PIR)和主動紅外探測器(Active Infrared Detector, AID)是兩種常見的安全監(jiān)控設備,它
    的頭像 發(fā)表于 09-20 11:38 ?1259次閱讀

    被動紅外探測器和主動紅外探測器的區(qū)別

    被動紅外探測器和主動紅外探測器是兩種常見的安全監(jiān)控設備,它們在防盜、監(jiān)控、邊界防護等方面有著廣泛的應用。這兩種探測器的主要區(qū)別在于它們檢測
    的頭像 發(fā)表于 09-20 11:35 ?1498次閱讀

    產品推薦|有線雙幕簾被動紅外探測器

    紅外探測器
    SASDSAS
    發(fā)布于 :2024年08月30日 21:56:06

    LoRa人體紅外探測器的原理

    LoRa人體活動紅外探測器IDM-ET14款高可靠性的探測人體熱釋電紅外探測器,基于LoRa無線通信技術,具有低功耗、低電壓顯示,防拆報警以
    的頭像 發(fā)表于 08-20 15:27 ?404次閱讀
    LoRa人體<b class='flag-5'>紅外</b><b class='flag-5'>探測器</b>的原理

    探索紅外熱成像探測器的基礎原理

    紅外熱成像探測器究竟是什么?它是如何工作的呢?讓我們一起來揭秘。紅外熱成像探測器:神奇的熱能揭示者紅外
    的頭像 發(fā)表于 07-03 16:06 ?960次閱讀
    探索<b class='flag-5'>紅外</b>熱成像<b class='flag-5'>探測器</b>的基礎原理

    基于米氏超構表面的像素集成長波多光譜Ⅱ類超晶格探測器

    μm)。目前,長波紅外多光譜探測器主要包括碲鎘汞、Ⅲ–Ⅴ族超晶格、量子阱等傳統(tǒng)半導體材料。然而,基于半導體材料多光譜探測系統(tǒng)通常需要配備復雜的光器件和精密光路,如分束
    的頭像 發(fā)表于 06-30 15:34 ?1.1w次閱讀
    基于米氏超構表面的像素集成長波多光譜Ⅱ類超<b class='flag-5'>晶格</b><b class='flag-5'>探測器</b>

    非制冷紅外探測器的敏感材料

    紅外熱成像技術,這個我們在科技新聞中經常可以看到的詞匯,它的應用領域非常廣泛,在紅外熱成像技術的研究和應用中,我們不能忽視其中的一個核心元器件——紅外探測器
    的頭像 發(fā)表于 06-27 17:24 ?578次閱讀
    非制冷<b class='flag-5'>紅外</b><b class='flag-5'>探測器</b>的敏感材料

    紅外探測器封裝秘籍:高可靠性鍵合工藝全解析

    紅外探測器在現(xiàn)代科技領域中扮演著舉足輕重的角色,廣泛應用于溫度檢測、環(huán)境監(jiān)控、醫(yī)學研究等領域。為了提升紅外探測器性能和可靠性,其封裝過程中
    的頭像 發(fā)表于 05-23 09:38 ?909次閱讀
    <b class='flag-5'>紅外</b><b class='flag-5'>探測器</b>封裝秘籍:高可靠性鍵合工藝全解析

    LoRa人體活動紅外探測器的原理

    LoRa人體活動紅外探測器IDM-ET14款高可靠性的探測人體熱釋電紅外探測器,基于LoRa無線通信技術,具有低功耗、低電壓顯示,防拆報警以
    的頭像 發(fā)表于 05-13 09:34 ?663次閱讀
    LoRa人體活動<b class='flag-5'>紅外</b><b class='flag-5'>探測器</b>的原理

    銻化物超晶格紅外探測器研究進展與發(fā)展趨勢綜述

    銻化物超晶格紅外探測器具有均勻性好、暗電流低和量子效率較高等優(yōu)點,其探測波長靈活可調,可以覆蓋短波至甚長波整個紅外譜段,是實現(xiàn)高均勻大面陣、
    的頭像 發(fā)表于 04-19 09:13 ?1255次閱讀
    銻化物超<b class='flag-5'>晶格</b><b class='flag-5'>紅外</b><b class='flag-5'>探測器</b>研究進展與發(fā)展趨勢綜述

    光電子工藝中集成鍺探測器的工藝挑戰(zhàn)與解決方法簡介

    鍺(Ge)探測器是硅光電子芯片中實現(xiàn)光電信號轉化的核心器件。在硅光電子芯片工藝中實現(xiàn)異質單片集成高性能Ge探測器工藝,是光模塊等硅
    的頭像 發(fā)表于 04-07 09:16 ?1134次閱讀
    硅<b class='flag-5'>基</b>光電子工藝中集成鍺<b class='flag-5'>探測器</b>的工藝挑戰(zhàn)與解決方法簡介
    现金网注册送彩金| 百家乐五湖四海娱乐| 百家乐官网学院教学视频| 全讯网网址| 网上百家乐官网游戏哪家信誉度最好| 红黑轮盘| 南京百家乐电| 钻石国际| 做生意摆放什么会招财| 松原市| 网址百家乐官网的玩法技巧和规则| 隆德县| 威尼斯人娱乐场送18| 百家乐有没有攻略| 百家乐官网自动下注| 大赢家足球比分| 成人百家乐的玩法技巧和规则| 聚龍社百家乐官网的玩法技巧和规则 | 百家乐官网游戏唯一官网网站 | 深州市| 大发888赢钱技巧| 百家乐玩法说明| 真人百家乐官网代理分成| 浩博国际娱乐城| 大发888有银钱的吗| 澳门百家乐文章| 迪士尼百家乐官网的玩法技巧和规则 | 威尼斯人娱乐平台网址| 百家乐投注窍门| 网上百家乐官网内| 评测百家乐官网博彩网站| 鼎尊国际娱乐| 大发888游戏在线客服| 网站百家乐博彩| 百家乐官网路书| 百家乐官网投注怎么样| 昭觉县| 金冠娱乐城怎么样| 博发百家乐的玩法技巧和规则| 百家乐翻天粤| 豪门百家乐官网的玩法技巧和规则 |