說到純視覺的自動駕駛方案,大家第一個想到的就是Tesla吧。的確,早在2021年,Tesla就已經實現了純視覺的BEV檢測方案,而且效果非常好。
細心的同學可能發現了,這套BEV方案中將相機空間的圖像轉換到BEV空間的核心組件就是Transformer。
Transformer來源于自然語言處理領域,首先被應用于機器翻譯。后來,大家發現它在計算機視覺領域效果也很不錯,而且在各大排行榜上碾壓CNN網絡。
目標檢測領域中,視覺Transformer不僅可以實現2D檢測、3D檢測,還可以實現多模態檢測,BEV視角下的檢測,性能也非常出色。
因此,掌握Transformer相關知識和工程基礎成為了企業招聘算法工程師的一個技能要求點,也是簡歷上的一個很大的加分項。
然而,想要掌握基于Transformer的目標檢測算法,有以下3個難點:
理解Transformer背后的理論基礎,比如自注意力機制(self-attention), 位置編碼(positional embedding),目標查詢(object query)等等,網上的資料比較雜亂,不夠系統,難以通過自學做到深入理解并融會貫通。
掌握基于Transformer的目標檢測算法的思路和創新點,一些Transformer論文涉及的新概念比較多,話術沒有那么通俗易懂,讀完論文仍然不理解算法的細節部分。
2
Transformer代碼不易看懂,因為作用機制與CNN有不少差別,所以完全理解代碼并實踐應用需要花費很大功夫。
3
那么如何學習基于Tansformer的目標檢測算法呢?
實踐部分
審核編輯:劉清
-
計算機視覺
+關注
關注
8文章
1700瀏覽量
46130 -
自動駕駛
+關注
關注
785文章
13932瀏覽量
167016 -
Transformer
+關注
關注
0文章
146瀏覽量
6047
原文標題:Transformer在自動駕駛中的應用前景怎么樣?
文章出處:【微信號:3D視覺工坊,微信公眾號:3D視覺工坊】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
采用華為云 Flexus 云服務器 X 實例部署 YOLOv3 算法完成目標檢測
![采用華為云 Flexus 云服務器 X 實例部署 YOLOv3 <b class='flag-5'>算法</b>完成<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>](https://file1.elecfans.com//web3/M00/04/88/wKgZPGd2D0qAKG0fAAUifvLbZBc511.png)
NPU與機器學習算法的關系
在樹莓派上部署YOLOv5進行動物目標檢測的完整流程
![在樹莓派上部署YOLOv5進行動物<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>的完整流程](https://file1.elecfans.com/web2/M00/0B/44/wKgZomcxbtSASks4AAAW0BjJUx4709.png)
旗晟機器人環境檢測算法有哪些?
![旗晟機器人環境<b class='flag-5'>檢測算法</b>有哪些?](https://file1.elecfans.com/web2/M00/FE/5B/wKgaomaaN6OAGrxcAAVkUgcDMqY870.png)
慧視小目標識別算法 解決目標檢測中的老大難問題
![慧視小<b class='flag-5'>目標</b>識別<b class='flag-5'>算法</b> 解決<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中的老大難問題](https://file.elecfans.com/web2/M00/7E/AE/poYBAGOGzF6AIDgVAAAaMH2b3yk969.png)
opencv圖像識別有什么算法
基于深度學習的小目標檢測
機器學習算法原理詳解
口罩佩戴檢測算法
![口罩佩戴<b class='flag-5'>檢測算法</b>](https://file1.elecfans.com/web2/M00/F7/9B/wKgaomaCnu2ARA27AADhqvybhOU191.png)
安全帽佩戴檢測算法
![安全帽佩戴<b class='flag-5'>檢測算法</b>](https://file1.elecfans.com/web2/M00/F4/27/wKgaomZ8JDeAGa4xAAC7g3SInDU151.png)
深入了解目標檢測深度學習算法的技術細節
![深入了解<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>深度<b class='flag-5'>學習</b><b class='flag-5'>算法</b>的技術細節](https://file.elecfans.com/web2/M00/4E/DC/poYBAGLCjeiALm_WAAAYmfR7Qec474.png)
基于深度學習的芯片缺陷檢測梳理分析
![基于深度<b class='flag-5'>學習</b>的芯片缺陷<b class='flag-5'>檢測</b>梳理分析](https://file1.elecfans.com/web2/M00/C0/E8/wKgZomXa31uAB_R6AAAVwpLznTQ304.png)
評論