衡阳派盒市场营销有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

寄生電感的介紹

jf_pJlTbmA9 ? 來源:微源半導體 ? 作者:微源半導體 ? 2023-11-29 16:41 ? 次閱讀

不知道大家在調試電路的時候,有沒有遇到這種情況,就是板子上所有的元器件參數和焊接都是正確的,可是通電以后,電路中的某些器件立馬就發生了損壞。這種現象很有可能跟電路中一種隱藏的東西有關 -- 寄生電感。

顧名思義,寄生電感是指寄生在電路板的PCB走線或其他元器件上的電感。一般來說,有導線的地方就會有寄生電感,比如PCB上的銅線、過孔,甚連芯片內部的bonding線上都會存在一定量的寄生電感,這些寄生電感的感量一般是從幾nH到幾十nH不等。

以LP6451同步Buck電路介紹寄生電感對電路的影響。

圖1是LP6451的典型應用原理圖,LP6451采用COT控制架構,支持最高18V的直流輸入,可提供最大3A的負載電流,同時LP6451還集成了輸入欠壓保護,輸出短路保護,過流保護,過溫保護等功能,具有電氣性能優異,安全性好等優點,是一款極具性價比的同步buck控制芯片

wKgZomVdhk2AfTMkAAB6Glnn_hI946.jpg

圖1:LP6451典型應用原理圖

寄生電感對輸入端的影響。

在LP6451方案的輸入端,會放置2顆陶瓷電容C2,C3對輸入電壓進行濾波,起到穩定輸入電壓的作用。在PCB板上,從電路輸入端到電容C2和C3的兩端是通過PCB上的走線來連接的,而這些走線實際上就是存在寄生電感的,我們通過仿真軟件來看一下,在引入20nH的寄生電感L1后,電路上電時,在輸入端會發生什么樣的變化。

從圖2的仿真結果來看,當藍色的輸入電壓由0V升高到12V的時候,電容C1上的電壓并不是升高到穩定的12V,而是變成了振蕩的正弦波,而正弦波的峰值電壓則達到了24V,是輸入電壓12V的2倍。如果這個電壓超過了電路中的元件的最高耐壓值,就會造成這些元件的損壞。

wKgaomVdhlSAereqAAGCwVE9z3o788.jpg

圖2:仿真結果

這時,很多工程師可能就會提出疑問,為什么在實際的應用過程中,并不是每次都能看到輸入電容上產生這種振蕩呢?這是因為PCB板上的走線,除了引入了寄生電感外,也額外引入了電阻,而這個電阻對正弦振蕩起到了阻尼衰減的作用。我們在之前的仿真電路的基礎上額外加入了電阻R1,可以看出隨著電阻R1阻值的增加,輸入電容上的電壓衰減速度變快,最高電壓也迅速降低。

wKgaomVdhlWAEF4LAAF_0ThxxgY423.jpg

圖3:新仿真結果

雖然在輸入端由于寄生電感產生的電壓振蕩可以同時被寄生電阻緩解,但我們在設計電源時,仍要時刻注意上電瞬間輸入電容上的電壓波形,以防產生異常的高壓,對輸入電容后面的電路元件造成損壞。

下期我們繼續介紹寄生電感對BUCK電路中開關管的影響。

本文轉載自: 微源半導體微信公眾號

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    456

    文章

    51177

    瀏覽量

    427263
  • 寄生電感
    +關注

    關注

    1

    文章

    156

    瀏覽量

    14631
收藏 人收藏

    評論

    相關推薦

    半大馬士革工藝:利用空氣隙減少寄生電容

    本文介紹了半大馬士革工藝:利用空氣隙減少寄生電容。 隨著半導體技術的不斷發展,芯片制程已經進入了3納米節點及更先進階段。在這個過程中,中道(MEOL)金屬互聯面臨著諸多新的挑戰,如寄生電容等
    的頭像 發表于 11-19 17:09 ?754次閱讀
    半大馬士革工藝:利用空氣隙減少<b class='flag-5'>寄生</b>電容

    合金電阻的寄生電感及其影響

    貼片合金電阻在電子電路中應用廣泛,尤其是在高精度測量和功率應用中被頻繁使用。然而,在高頻或對精度要求較高的應用中,寄生電感成為一個不可忽視的問題。
    的頭像 發表于 11-06 09:52 ?439次閱讀

    MOS管寄生參數的定義與分類

    MOS(金屬-氧化物-半導體)管的寄生參數是指在集成電路設計中,除MOS管基本電氣特性(如柵極電壓、漏極電壓、柵極電流等)外,由于制造工藝、封裝方式以及電路布局等因素而產生的額外參數。這些寄生參數對MOS管的性能和使用具有重要影響,是集成電路設計中不可忽視的重要因素。
    的頭像 發表于 10-29 18:11 ?961次閱讀

    MOS管寄生參數的影響

    MOS(金屬-氧化物-半導體)管作為常見的半導體器件,在集成電路中發揮著至關重要的作用。然而,MOS管的性能并非僅由其基本電氣特性決定,還受到多種寄生參數的影響。
    的頭像 發表于 10-10 14:51 ?769次閱讀

    普通探頭和差分探頭寄生電容對測試波形的影響

    在電子測試和測量領域,探頭是連接被測設備(DUT)與測量儀器(如示波器)之間的關鍵組件。探頭的性能直接影響到測試結果的準確性和可靠性。其中,寄生電容是探頭設計中一個不容忽視的因素,它對測試波形有著
    的頭像 發表于 09-06 11:04 ?451次閱讀

    繞線電感理論值與實際值不匹配

    各位前輩,請教個問題, 1、繞線電感為什么在低頻段存在L>ALN^2;在一定的頻率后出現L<ALN^2;是因為線圈的寄生電容的影響嗎?
    發表于 09-05 22:26

    系統寄生參數對SiC器件開關的影響分析

    *本論文摘要由PCIM官方授權發布/摘要/本文分析了系統寄生參數對SiC(碳化硅)器件使用的影響。本文還研究了SiCMOS開關開通時的過流機理,以及開通電流振蕩的原因。除了寄生電感對功率器件電壓應力
    的頭像 發表于 08-30 12:24 ?507次閱讀
    系統<b class='flag-5'>寄生</b>參數對SiC器件開關的影響分析

    為什么BUCK芯片的電感電流在上下峰值處出現抬升和跌落?

    還是異步控制,這個現象都存在 2. 現象與負載電流大小無關 3. 在SW口加RC吸收電路能抑制這個反向尖峰 4. 仿真結果表明,過大的電感寄生并聯電容(1pF~50pF)會導致這個現象,但我不認為我的應用中會出現這樣大的電感
    發表于 07-25 23:39

    pfc電感與普通電感的區別

    PFC電感(Power Factor Correction Inductor)是一種用于提高功率因數的電感器,與普通電感器相比,它具有更高的性能和應用范圍。本文將介紹PFC
    的頭像 發表于 07-16 14:40 ?2596次閱讀

    電感是什么 工作原理介紹

    電感是一種利用電流產生磁場、利用磁場儲存能量的電子元件。它的工作原理基于電磁感應定律,即當導體周圍的磁通量發生變化時,導體中就會產生電動勢,從而產生感應電流。電感的主要作用是阻礙電流的變化,這種
    的頭像 發表于 06-09 16:57 ?2551次閱讀
    <b class='flag-5'>電感</b>是什么 工作原理<b class='flag-5'>介紹</b>

    什么是寄生電感?如何計算過孔的寄生電感

    在PCB(PrintedCircuitBoard,印刷電路板)設計中,過孔寄生電感是一個重要的考慮因素。當電流通過PCB的過孔時,由于過孔的幾何形狀和布局,會產生一定的寄生電感。這種
    的頭像 發表于 03-15 08:19 ?2472次閱讀
    什么是<b class='flag-5'>寄生</b><b class='flag-5'>電感</b>?如何計算過孔的<b class='flag-5'>寄生</b><b class='flag-5'>電感</b>?

    常用電感線圈的介紹

    電子設備中得到廣泛應用。   以上就是關于常用電感線圈的一些介紹電感線圈作為電子元件中的重要組成部分,廣泛應用于各種電子設備中。在選擇電感線圈時,需要根據具體的電路需求和應用場
    的頭像 發表于 03-12 13:22 ?1294次閱讀

    如何測量功率回路中的雜散電感

    本文支持快捷轉載影響IGBT和SiCMOSFET在系統中的動態特性有兩個非常重要的參數:寄生電感寄生電容。而本文主要介紹功率回路中寄生
    的頭像 發表于 03-07 08:13 ?1053次閱讀
    如何測量功率回路中的雜散<b class='flag-5'>電感</b>

    寄生電感到底是什么?如何計算過孔的寄生電感

    從式中可以看出:過孔的直徑對寄生電感的影響較小,而長度才是影響寄生電感的關鍵因素。所以,在設計電路板時,要盡量減小過孔的長度,以提高電路的性能。
    的頭像 發表于 02-27 14:28 ?1678次閱讀

    詳解MOS管的寄生電感寄生電容

    寄生電容和寄生電感是指在電路中存在的非意圖的電容和電感元件。 它們通常是由于電路布局、線路長度、器件之間的物理距離等因素引起的。
    的頭像 發表于 02-21 09:45 ?2738次閱讀
    詳解MOS管的<b class='flag-5'>寄生</b><b class='flag-5'>電感</b>和<b class='flag-5'>寄生</b>電容
    澳门百家乐官网博客| 百家乐官网与龙虎斗怎么玩| 广州百家乐官网牌具公司| 克拉克百家乐官网的玩法技巧和规则| 百家乐输了好多钱| 威尼斯人娱乐官网| 庆云县| 百家乐官网有没有破解之法| 百家乐画哪个路单| 星空棋牌官方下载| 百家乐官网澳门色子| 百家乐真人秀| 大丰收娱乐城开户| 百家乐官网冲动| 百家乐赌场导航| 澳门美高梅金殿| 真人百家乐官网赌城| 百家乐高| 百家乐官网注码管理| 高手百家乐赢钱法| 澳门博彩业| 公海百家乐官网的玩法技巧和规则 | 百家乐官网游戏排行榜| 百家乐娱乐注册就送| 娱乐城彩金| 优博百家乐官网的玩法技巧和规则 | 百家乐官网网上赌博| 太阳城百家乐的分数| 利博娱乐城| 豪杰百家乐游戏| bet365备用| 做生意摆什么好招财| bet365滚球| 游戏百家乐官网的玩法技巧和规则 | 百家乐官网号解码器| 鸟巢百家乐的玩法技巧和规则| 冷水江市| 菲律宾百家乐娱乐网| 务川| 网站百家乐博彩| 雅江县|