作者:京東云開發(fā)者-京東保險郭盼
1、簡介
小編最近在使用系統(tǒng)的時候,發(fā)現(xiàn)盡管應(yīng)用已經(jīng)使用了 redis 緩存提高查詢效率,但是仍然有進(jìn)一步優(yōu)化的空間,于是想到了比分布式緩存性能更好的本地緩存,因此對領(lǐng)域內(nèi)常用的本地緩存進(jìn)行了一番調(diào)研,有早期的 Guava 緩存、在 Guava 上進(jìn)一步傳承的 Caffine 以及自稱在 Java 中使用最廣泛的 EhCache,那么我們該怎么選擇適合自己應(yīng)用的緩存呢,小編下面會簡單介紹,并將以上緩存進(jìn)行一個對比,希望幫助大家選擇最適合自己系統(tǒng)的本地緩存。
2、Guava 緩存簡介
Guava cache 是 Google 開發(fā)的 Guava 工具包中一套完善的 JVM 本地緩存框架,底層實現(xiàn)的數(shù)據(jù)結(jié)構(gòu)類似于 ConcurrentHashMap,但是進(jìn)行了更多的能力拓展,包括緩存過期時間設(shè)置、緩存容量設(shè)置、多種淘汰策略、緩存監(jiān)控等,下面簡單介紹下這些功能及其使用方式。
2.1、緩存過期時間設(shè)置
Guava 的過期時間設(shè)置有基于創(chuàng)建時間和最后一次訪問時間兩種策略. (1) 基于創(chuàng)建時間 通過對比緩存記錄的插入時間來判斷,比如設(shè)置過期時間為 5 分鐘,不管中間有沒有訪問,到時過期。
public CachecreateCache() { return CacheBuilder.newBuilder() .expireAfterWrite(5L, TimeUnit.MINUTES) .build(); }
(2) 基于過期時間
通過對比最近最后一次的訪問時間,比如設(shè)置 5 分鐘,每次訪問之后都會刷新過期時間為 5 分鐘,只有持續(xù) 5 分鐘沒有被訪問到才會過期。
public CachecreateCache() { return CacheBuilder.newBuilder() .expireAfterAccess(5L, TimeUnit.MINUTES) .build(); }
2.2、緩存容量和淘汰策略設(shè)置
Guava cache 是內(nèi)存型緩存,有內(nèi)存溢出風(fēng)險,因此需要設(shè)置緩存的最大存儲上限,通過緩存的條數(shù)或每條緩存的權(quán)重來判斷是否達(dá)到了設(shè)定閾值,當(dāng)緩存的數(shù)據(jù)量達(dá)到設(shè)定閾值之后,Guava cache 支持使用 FIFO 和 LRU 的策略對緩存記錄采取淘汰的措施。
(1)限制緩存記錄條數(shù)
public CachecreateCache() { return CacheBuilder.newBuilder() .maximumSize(100L) .build(); }
(2)限制緩存記錄權(quán)重
public Cache使用限制緩存記錄權(quán)重時要先計算 weight 的 value 對象的字節(jié)數(shù),每 1kb 字節(jié)作為一個權(quán)重,對比限制緩存記錄,我們就能將緩存的總占用限制在 100kb 左右。createCache() { return CacheBuilder.newBuilder() .maximumWeight(100L) .weigher((key, value) -> (int) Math.ceil(instrumentation.getObjectSize(value) / 1024L)) .build(); }
2.3 緩存監(jiān)控
緩存記錄的加載和命中情況是評價緩存處理能力的重要指標(biāo),Guava cache 提供了 stat 統(tǒng)計日志對這兩個指標(biāo)進(jìn)行了統(tǒng)計,我們只需要在創(chuàng)建緩存容器的時候加上 recordStats 就可以開啟統(tǒng)計。
public CachecreateCache() { return CacheBuilder.newBuilder() .recordStats() .build(); }
2.4 Guava cache 的優(yōu)劣勢和適用場景
優(yōu)劣勢:Guava cache 通過內(nèi)存處理數(shù)據(jù),具有減少 IO 請求,讀寫性能快的優(yōu)勢,但是受內(nèi)存容量限制,只能處理少量數(shù)據(jù)的讀寫,還有可能對本機(jī)內(nèi)存造成壓力,并且在分布式部署中,會存在不同機(jī)器節(jié)點數(shù)據(jù)不一致的情況,即緩存漂移。 適用場景:讀多寫少,對數(shù)據(jù)一致性要求不高的場景。
3、Caffeine 簡介
Caffeine 同樣是 Google 開發(fā)的,是在 Guava cache 的基礎(chǔ)上改良而來的,底層設(shè)計思路、功能和使用方式與 Guava 非常類似,但是各方面的性能都要遠(yuǎn)遠(yuǎn)超過前者,可以看做是 Guava cache 的升級版,因此,之前使用過 Guava cache,也能夠很快的上手 Caffeine,下面是 Caffeine 和 Guava cache 的緩存創(chuàng)建對比,基本可以無門檻過渡。
public CachecreateCache() { return Caffeine.newBuilder() .initialCapacity(1000) .maximumSize(100L) .expireAfterWrite(5L, TimeUnit.MINUTES) .recordStats() .build(); }
public Cache那么 Caffeine 底層又做了哪些優(yōu)化,才能讓其性能高于 Guava cache 呢?主要包含以下三點:createCache() { return CacheBuilder.newBuilder() .initialCapacity(1000) .maximumSize(100L) .expireAfterWrite(5L, TimeUnit.MINUTES) .recordStats() .build(); }
3.1、對比 Guava cache 的性能主要優(yōu)化項
(1)異步策略 Guava cache 在讀操作中可能會觸發(fā)淘汰數(shù)據(jù)的清理操作,雖然自身也做了一些優(yōu)化來減少讀的時候的清理操作,但是一旦觸發(fā),就會降低查詢效率,對緩存性能產(chǎn)生影響。而在 Caffeine 支持異步操作,采用異步處理的策略,查詢請求在觸發(fā)淘汰數(shù)據(jù)的清理操作后,會將清理數(shù)據(jù)的任務(wù)添加到獨(dú)立的線程池中進(jìn)行異步操作,不會阻塞查詢請求,提高了查詢性能。
(2)ConcurrentHashMap 優(yōu)化
Caffeine 底層都是通過 ConcurrentHashMap 來進(jìn)行數(shù)據(jù)的存儲,因此隨著 Java8 中對 ConcurrentHashMap 的調(diào)整,數(shù)組 + 鏈表的結(jié)構(gòu)升級為數(shù)組 + 鏈表 + 紅黑樹的結(jié)構(gòu)以及分段鎖升級為 syschronized+CAS,降低了鎖的粒度,減少了鎖的競爭,這兩個優(yōu)化顯著提高了 Caffeine 在讀多寫少場景下的查詢性能。
(3)新型淘汰算法
W-TinyLFU 傳統(tǒng)的淘汰算法,如 LRU、LFU、FIFO,在實際的緩存場景中都存在一些弊端,如 FIFO 算法,如果緩存使用的頻率較高,那么緩存數(shù)據(jù)會一直處在進(jìn)進(jìn)出出的狀態(tài),間接影響到緩存命中率。
LRU 算法,在批量刷新緩存數(shù)據(jù)的場景下,可能會將其他緩存數(shù)據(jù)淘汰掉,從而帶來緩存擊穿的風(fēng)險。
LFU 算法,需要保存緩存記錄的訪問次數(shù),帶來內(nèi)存空間的損耗。
因此,Caffeine 引入了 W-TinyLFU 算法,由窗口緩存、過濾器、主緩存組成。緩存數(shù)據(jù)剛進(jìn)入時會停留在窗口緩存中,這個部分只占總緩存的 1%,當(dāng)被擠出窗口緩存時,會在過濾器匯總和主緩存中淘汰的數(shù)據(jù)進(jìn)行比較,如果頻率更高,則進(jìn)入主緩存,否則就被淘汰,主緩存被分為淘汰段和保護(hù)段,兩段都是 LRU 算法,第一次被訪問的元素會進(jìn)入淘汰段,第二次被訪問會進(jìn)入保護(hù)段,保護(hù)段中被淘汰的元素會進(jìn)入淘汰段,這種算法實現(xiàn)了高命中率和低內(nèi)存占用。
3.2、Caffeine 的優(yōu)劣勢和適用場景
優(yōu)勢:對比 Guava cache 有更高的緩存性能,劣勢:仍然存在緩存漂移的問題;JDK 版本過低無法使用 適用場景:1、適用場景:讀多寫少,對數(shù)據(jù)一致性要求不高的場景;2、純內(nèi)存緩存,JDK8 及更高版本中,追求比 Guava cache 更高的性能。
4、Ehcache 簡介
Guava cache 和 Caffeine 都是 JVM 緩存,會受到內(nèi)存大小的制約,最新的 Ehcache 采用堆內(nèi)緩存 + 堆外緩存 + 磁盤的方式,打破了這一制約。堆內(nèi)緩存就是被 JVM 管理的那一部分緩存,而堆外緩存,就是在內(nèi)存中另外在開辟一塊不被 JVM 管理的部分。堆外緩存這部分既可以享受內(nèi)存的高速讀寫能力,而且又避免的 JVM 頻繁的 GC,缺點是需要自行清理數(shù)據(jù)。
下面是 Ehcache 緩存的創(chuàng)建,指定了堆內(nèi)、堆外緩存和磁盤緩存的大小。
ResourcePoolsBuilder.newResourcePoolsBuilder() .heap(20, MemoryUnit.MB) .offheap(10, MemoryUnit.MB) .disk(5, MemoryUnit.GB);為了解決緩存漂移的問題,Ehcache 支持通過集群的方式,實現(xiàn)了分布式節(jié)點之間的數(shù)據(jù)互通。關(guān)于 Ehcache 的集群策略,后續(xù)文章再詳細(xì)闡述。
5、不同本地緩存對比
框架 | 命中率 | 速度 | 回收算法 | 使用難度 | 集群 | 適用場景 |
---|---|---|---|---|---|---|
Guava cache | 中 | 第三 | LRU、LFU、FIFO | 易 | 不支持 | 讀多寫少,允許少量緩存偏移 |
Caffeine | 高 | 第一 | W-TinyLFU | 易 | 不支持 | 讀多寫少,允許少量緩存偏移,能用 Caffeine 就別用 Guava cache |
Ehcache | 中 | 第二 | LRU、LFU、FIFO | 中 | 支持 | 分布式系統(tǒng)中對數(shù)據(jù)一致性要求高 |
審核編輯:湯梓紅
-
內(nèi)存
+關(guān)注
關(guān)注
8文章
3055瀏覽量
74327 -
緩存
+關(guān)注
關(guān)注
1文章
241瀏覽量
26757 -
JVM
+關(guān)注
關(guān)注
0文章
158瀏覽量
12259
原文標(biāo)題:緩存之美 —— 如何選擇合適的本地緩存?
文章出處:【微信號:OSC開源社區(qū),微信公眾號:OSC開源社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論