所謂的HiAI移動計算架構,主要有四部分組成,CPU、GPU、ISP/DSP和NPU。作為全球第一枚集成專用NPU的移動芯片,華為重點介紹NPU神經網絡單元,聲稱在HiAI架構下AI性能密度大幅優于CPU和GPU,能夠用更少的能耗更快的完成更多任務,大幅提升芯片的運算效率。
AI芯片能夠以人類的思考方式來理解人類訴求,具備高處理速度,高密度和高能效比,而麒麟970只是個開始,并超越競爭對手。
CPU部分,麒麟970與上一代麒麟960一樣為八核心設計,由4個主頻為2.4GHz的Cortex-A73大內核與4個主頻1.8GHz的Cortex-A53內核組成,性能上無變化,畢竟同樣架構頻率,傳聞所說的2.8GHz主頻吊打驍龍835并沒能實現,但跑分上追平驍龍835應該沒問題,并且得益于10納米工藝的進步能效提升20%。
更具體來說,在16位浮點數(即FP16)時,麒麟970內置的NPU運算能力達到1.92 TFLOPs,在AI人工智能深度學習下,所有硬件能夠協調芯片內部的各個組件及手機硬件,如ISP、DSP,保持處理某些特定任務時,提升速度并低功耗運作。例如有了NPU的加成,在圖像識別任務上,對比Cortex-A73 CPU 性能提升25倍,能效提升50倍之多,拍攝1000張照片僅僅消耗4000mAh電池手機0.19%的電量,圖像識別速度可達到約2000張/分鐘。
相比之下,三星S8使用CPU處理每分鐘僅95張,蘋果iPhone 7 Plus同時使用CPU和GPU,每分鐘也僅能識別487張,華為完勝。
簡而言之,麒麟970有了NPU單元之后,至少在拍照和圖像處理上,比之前單純依賴CPU和GPU要快得多。而對于競爭對手,麒麟970最直接的就是保持高效率,并且更加的省電。未來AI獨立單元內置于芯片一定是趨勢,蘋果也在做,只是華為搶先開了個頭.
日前,美國知名科技媒體Android Authority主筆Gary Sims對麒麟970進行了深度解讀,講述了麒麟970的人工智能NPU的工作原理,對芯片設計的深遠影響,以及為用戶使用場景帶來的跨越式體驗。
“神經網絡(Neural Networks)”和“機器學習(Machine Learning)”是近兩年移動處理器領域最流行的兩個詞。華為麒麟970的NPU(神經網絡處理器)、Google Pixel 2內置的IPU(圖像處理器),以及蘋果A11 Bionic,都是實現上述功能特性的專用硬件解決方案。
既然華為、Google和蘋果都在都在探索神經引擎處理器,你可能以為機器學習需要特定的硬件。其實不然,神經網絡可以在任何形式的處理器上運行,從微處理器到CPU、GPU甚至是DSP。
所以,問題的根本不在于處理器是否能利用神經神經網絡和機器學習,而在于它到底有多快,能提升多少效率。
如果時間倒退回30年前,當年的桌面處理器是沒有的FPU(浮點運算單元)芯片的,在486之后,Intel把FPU集成到了CPU內部,浮點運算性能大幅提升。而在很多實例計算中,全都是浮點數運算。這樣以來,有FPU和沒有FPU,運算效率天差之別。
而如今,移動處理器中的NPU也是類似的情況。你可能覺得我們并不需要NPU,就能使用神經網絡,但實時情況是,華為正在用事實案例證明,當遇到實時處理運算的情況,NPU是必須的。
簡單來說,“神經網絡”可以理解為“機器學習”中“教”一臺機器區別分辨不同“事物”的一系列技術中的一種。上述“事物”可以是一張照片、一個單詞甚至是一種動物的聲音,諸如此類。
“神經網絡”由很多“神經元”組成,這些“神經元”可以接收輸入信號,然后通過網絡再向外傳播信號,這取決于輸入的強度和自身閾值。
舉個簡單的例子,神經網絡正在監測一組燈其中一個的開關,但在網絡中,這些燈的狀態只能0或者1來表達,但不同的燈可能會出現一樣的開關狀態。
那么問題來了,神經網絡怎么知道是該輸出0還是該輸出1呢?沒有規則或者程序能告訴神經網絡,輸出我們想得到的邏輯答案。
唯一的方面就是對神經網絡進行訓練。大量的“樣本”和預期結果一起被注入到神經網絡中,各種各樣的閾值反復微調,不斷產生接近預期的結果。這個階段可以稱為“訓練階段”。
這聽起來很簡單,但實際上相當復雜,尤其是遇到語言、圖像這種復雜樣本的時候。一旦訓練達成,神經網絡會自動學會輸出預期結果,即便輸入的“樣本”之前從來沒有見過。
神經網絡訓練成功后,本質上就成了一種靜態神經網絡模型,它就能應用在數以百萬計的設備上用于推理,在CPU、GPU甚至是DSP上運行。這個階段可以稱為“推理階段”。
Gary Sims指出,“推理階段”的難度要低于“訓練階段”,而這正是NPU發揮專長的地方。
所以,華為麒麟970最大的不同是,專門設置了NPU硬件芯片,它在處理靜態神經網絡模型方面有得天獨厚的優勢,不僅更快,還更有效率。事實上,NPU甚至能以17-33fps實時處理智能手機攝像頭拍攝的“直播”視頻。
從架構來看,麒麟970像是一臺“發電站”,內置8顆CPU和12顆GPU,另有移動網絡連接以及多媒體處理模塊,晶體管規模達到了史無前例的55億顆。據華為透露,NPU大約內含1.5億晶體管,不到整個芯片的3%。
這對于一款移動處理器來說尤為重要。首先,NPU的加入不會明顯增大處理器的尺寸、成本,這就意味著,NPU不僅能放入旗艦手機,一些中端手機也能適用。在未來5年,NPU將對Soc設計產生深遠影響。
其次是功耗和效率。NPU并非“電老虎”會犧牲手機的續航,相反它能高效的幫CPU承擔大量推理運算的任務,反而能節省不少功耗。
在最后的總結中,Gary Sims表示,如果華為能吸引更多第三方App開發者使用NPU,其前景不可限量。想象一下,當App在使用圖像、聲音、語音識別的時候,全部都能本地處理,不再需要網絡連接或者云服務,App的使用體驗將大大提升和加強。
試想,一名游客直接通過相機App就能認出當地地標,App能智能識別你的食物并給出相應的卡路里熟知、提醒食物過敏......
你認為,NPU會像當年FPU之于CPU一樣,成為移動Soc芯片的標準嗎?不妨在評論中發表自己的看法。
-
神經網絡
+關注
關注
42文章
4779瀏覽量
101171 -
機器學習
+關注
關注
66文章
8438瀏覽量
133086 -
麒麟970
+關注
關注
10文章
264瀏覽量
63286
原文標題:外媒:終于看懂Kirin 970的NPU
文章出處:【微信號:mcuworld,微信公眾號:嵌入式資訊精選】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論