人臉識別算法原理
人臉識別算法的原理:系統輸入一般是一張或者一系列含有未確定身份的人臉圖像,以及人臉數據庫中的若干已知身份的人臉圖象或者相應的編碼,而其輸出則是一系列相似度得分,表明待識別的人臉的身份。
1、基于幾何特征的方法
1)基本思想
采用幾何特征進行正面人臉識別一般是通過提取人眼、口、鼻等重要特征點的位置和眼睛等重要器官的幾何形狀作為分類特征。因為人臉由眼睛、鼻子、嘴巴、下巴等部件構成,正因為這些部件的形狀、大小和結構上的各種差異才使得世界上每個人臉千差萬別,所以對這些部件的形狀和結構關系的幾何描述,可以做為人臉識別的重要特征。
2)局限性
基于幾何特征的方法是最早、最傳統的方法,通常需要和其他算法結合才能有比較好的效果。基于參數的人臉表示可以實現對人臉顯著特征的一個高效描述,但它需要大量的前處理和精細的參數選擇。同時,采用一般幾何特征只描述了部件的基本形狀與結構關系,忽略了局部細微特征,造成部分信息的丟失,更適合于做粗分類,而且目前已有的特征點檢測技術在精確率上還遠不能滿足要求,計算量也較大。
2、特征臉方法(PCA)
特征臉方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有簡單有效的特點,也稱為基于主成分分析(principalcomponentanalysis,簡稱PCA)的人臉識別方法。
1)基本思想
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然后再計算出它們的幾何特征量,而這些特征量形成一描述該面像的特征向量。其技術的核心實際為“局部人體特征分析”和“圖形/神經識別算法。”這種算法是利用人體面部各器官及特征部位的方法。如對應幾何關系多數據形成識別參數與數據庫中所有的原始參數進行比較、判斷與確認。
2)局限性
特征臉方法是一種簡單、快速、實用的基于變換系數特征的算法,但由于它在本質上依賴于訓練集和測試集圖像的灰度相關性,而且要求測試圖像與訓練集比較像,所以它有著很大的局限性。
3、神經網絡方法
1)基本思想
人工神經網絡是一種非線性動力學系統,具有良好的自組織、自適應能力。目前神經網絡方法在人臉識別中的研究方興未艾,但在人臉識別上的應用比起前兩類方法來有一定的優勢,因為對人臉識別的許多規律或規則進行顯性的描述是相當困難的,而神經網絡方法則可以通過學習的過程獲得對這些規律和規則的隱性表達,它的適應性更強,一般也比較容易實現。因此人工神經網絡識別速度快,但識別率低。
2)局限性
神經網絡方法通常需要將人臉作為一個一維向量輸入,因此輸入節點龐大,其識別重要的一個目標就是降維處理。
-
人臉識別
+關注
關注
76文章
4020瀏覽量
82321 -
人臉識別算法
+關注
關注
0文章
10瀏覽量
2714
發布評論請先 登錄
相關推薦
評論