一、為什么用自增列作為主鍵
1、如果我們定義了主鍵(PRIMARY KEY),那么InnoDB會選擇主鍵作為聚集索引、如果沒有顯式定義主鍵,則InnoDB會選擇第一個不包含有NULL值的唯一索引作為主鍵索引、如果也沒有這樣的唯一索引,則InnoDB會選擇內(nèi)置6字節(jié)長的ROWID作為隱含的聚集索引(ROWID隨著行記錄的寫入而主鍵遞增,這個ROWID不像ORACLE的ROWID那樣可引用,是隱含的)。
2、數(shù)據(jù)記錄本身被存于主索引(一顆B+Tree)的葉子節(jié)點(diǎn)上。這就要求同一個葉子節(jié)點(diǎn)內(nèi)(大小為一個內(nèi)存頁或磁盤頁)的各條數(shù)據(jù)記錄按主鍵順序存放,因此每當(dāng)有一條新的記錄插入時,MySQL會根據(jù)其主鍵將其插入適當(dāng)?shù)墓?jié)點(diǎn)和位置,如果頁面達(dá)到裝載因子(InnoDB默認(rèn)為15/16),則開辟一個新的頁(節(jié)點(diǎn))
3、如果表使用自增主鍵,那么每次插入新的記錄,記錄就會順序添加到當(dāng)前索引節(jié)點(diǎn)的后續(xù)位置,當(dāng)一頁寫滿,就會自動開辟一個新的頁
4、如果使用非自增主鍵(如果身份證號或?qū)W號等),由于每次插入主鍵的值近似于隨機(jī),因此每次新紀(jì)錄都要被插到現(xiàn)有索引頁得中間某個位置,此時MySQL不得不為了將新記錄插到合適位置而移動數(shù)據(jù),甚至目標(biāo)頁面可能已經(jīng)被回寫到磁盤上而從緩存中清掉,此時又要從磁盤上讀回來,這增加了很多開銷,同時頻繁的移動、分頁操作造成了大量的碎片,得到了不夠緊湊的索引結(jié)構(gòu),后續(xù)不得不通過OPTIMIZE TABLE來重建表并優(yōu)化填充頁面。
二、為什么使用數(shù)據(jù)索引能提高效率
1、數(shù)據(jù)索引的存儲是有序的
2、在有序的情況下,通過索引查詢一個數(shù)據(jù)是無需遍歷索引記錄的
3、極端情況下,數(shù)據(jù)索引的查詢效率為二分法查詢效率,趨近于 log2(N)
三、B+樹索引和哈希索引的區(qū)別
B+樹是一個平衡的多叉樹,從根節(jié)點(diǎn)到每個葉子節(jié)點(diǎn)的高度差值不超過1,而且同層級的節(jié)點(diǎn)間有指針相互鏈接,是有序的
哈希索引就是采用一定的哈希算法,把鍵值換算成新的哈希值,檢索時不需要類似B+樹那樣從根節(jié)點(diǎn)到葉子節(jié)點(diǎn)逐級查找,只需一次哈希算法即可,是無序的
四、哈希索引的優(yōu)勢
1、等值查詢。哈希索引具有絕對優(yōu)勢(前提是:沒有大量重復(fù)鍵值,如果大量重復(fù)鍵值時,哈希索引的效率很低,因?yàn)榇嬖谒^的哈希碰撞問題。)
五、哈希索引不適用的場景
1、不支持范圍查詢
2、不支持索引完成排序
3、不支持聯(lián)合索引的最左前綴匹配規(guī)則
通常,B+樹索引結(jié)構(gòu)適用于絕大多數(shù)場景,像下面這種場景用哈希索引才更有優(yōu)勢:
在HEAP表中,如果存儲的數(shù)據(jù)重復(fù)度很低(也就是說基數(shù)很大),對該列數(shù)據(jù)以等值查詢?yōu)橹鳎瑳]有范圍查詢、沒有排序的時候,特別適合采用哈希索引,例如這種SQL:
selectid,namefromtablewherename='李明'; — 僅等值查詢
而常用的InnoDB引擎中默認(rèn)使用的是B+樹索引,它會實(shí)時監(jiān)控表上索引的使用情況,如果認(rèn)為建立哈希索引可以提高查詢效率,則自動在內(nèi)存中的“自適應(yīng)哈希索引緩沖區(qū)”建立哈希索引(在InnoDB中默認(rèn)開啟自適應(yīng)哈希索引),通過觀察搜索模式,MySQL會利用index key的前綴建立哈希索引,如果一個表幾乎大部分都在緩沖池中,那么建立一個哈希索引能夠加快等值查詢。
注意:在某些工作負(fù)載下,通過哈希索引查找?guī)淼男阅芴嵘h(yuǎn)大于額外的監(jiān)控索引搜索情況和保持這個哈希表結(jié)構(gòu)所帶來的開銷。但某些時候,在負(fù)載高的情況下,自適應(yīng)哈希索引中添加的read/write鎖也會帶來競爭,比如高并發(fā)的join操作。like操作和%的通配符操作也不適用于自適應(yīng)哈希索引,可能要關(guān)閉自適應(yīng)哈希索引。
六、B樹和B+樹的區(qū)別
1、B樹,每個節(jié)點(diǎn)都存儲key和data,所有節(jié)點(diǎn)組成這棵樹,并且葉子節(jié)點(diǎn)指針為nul,葉子結(jié)點(diǎn)不包含任何關(guān)鍵字信息。
2、B+樹,所有的葉子結(jié)點(diǎn)中包含了全部關(guān)鍵字的信息,及指向含有這些關(guān)鍵字記錄的指針,且葉子結(jié)點(diǎn)本身依關(guān)鍵字的大小自小而大的順序鏈接,所有的非終端結(jié)點(diǎn)可以看成是索引部分,結(jié)點(diǎn)中僅含有其子樹根結(jié)點(diǎn)中最大(或最小)關(guān)鍵字。 (而B 樹的非終節(jié)點(diǎn)也包含需要查找的有效信息)
七、為什么說B+比B樹更適合實(shí)際應(yīng)用中操作系統(tǒng)的文件索引和數(shù)據(jù)庫索引?
1、B+的磁盤讀寫代價更低B+的內(nèi)部結(jié)點(diǎn)并沒有指向關(guān)鍵字具體信息的指針。因此其內(nèi)部結(jié)點(diǎn)相對B樹更小。如果把所有同一內(nèi)部結(jié)點(diǎn)的關(guān)鍵字存放在同一盤塊中,那么盤塊所能容納的關(guān)鍵字?jǐn)?shù)量也越多。一次性讀入內(nèi)存中的需要查找的關(guān)鍵字也就越多。相對來說IO讀寫次數(shù)也就降低了。
2、B+-tree的查詢效率更加穩(wěn)定由于非終結(jié)點(diǎn)并不是最終指向文件內(nèi)容的結(jié)點(diǎn),而只是葉子結(jié)點(diǎn)中關(guān)鍵字的索引。所以任何關(guān)鍵字的查找必須走一條從根結(jié)點(diǎn)到葉子結(jié)點(diǎn)的路。所有關(guān)鍵字查詢的路徑長度相同,導(dǎo)致每一個數(shù)據(jù)的查詢效率相當(dāng)。
八、MySQL聯(lián)合索引
1、聯(lián)合索引是兩個或更多個列上的索引。對于聯(lián)合索引:Mysql從左到右的使用索引中的字段,一個查詢可以只使用索引中的一部份,但只能是最左側(cè)部分。例如索引是key index (a,b,c). 可以支持a 、 a,b 、 a,b,c 3種組合進(jìn)行查找,但不支持 b,c進(jìn)行查找 .當(dāng)最左側(cè)字段是常量引用時,索引就十分有效。
2、利用索引中的附加列,您可以縮小搜索的范圍,但使用一個具有兩列的索引 不同于使用兩個單獨(dú)的索引。復(fù)合索引的結(jié)構(gòu)與電話簿類似,人名由姓和名構(gòu)成,電話簿首先按姓氏對進(jìn)行排序,然后按名字對有相同姓氏的人進(jìn)行排序。如果您知 道姓,電話簿將非常有用;如果您知道姓和名,電話簿則更為有用,但如果您只知道名不姓,電話簿將沒有用處。
九、什么情況下應(yīng)不建或少建索引
1、表記錄太少
2、經(jīng)常插入、刪除、修改的表
3、數(shù)據(jù)重復(fù)且分布平均的表字段,假如一個表有10萬行記錄,有一個字段A只有T和F兩種值,且每個值的分布概率大約為50%,那么對這種表A字段建索引一般不會提高數(shù)據(jù)庫的查詢速度。
4、經(jīng)常和主字段一塊查詢但主字段索引值比較多的表字段
十、什么是表分區(qū)?
表分區(qū),是指根據(jù)一定規(guī)則,將數(shù)據(jù)庫中的一張表分解成多個更小的,容易管理的部分。從邏輯上看,只有一張表,但是底層卻是由多個物理分區(qū)組成。
十一、表分區(qū)與分表的區(qū)別
分表:指的是通過一定規(guī)則,將一張表分解成多張不同的表。比如將用戶訂單記錄根據(jù)時間成多個表。
分表與分區(qū)的區(qū)別在于:分區(qū)從邏輯上來講只有一張表,而分表則是將一張表分解成多張表。
十二、表分區(qū)有什么好處?
1、分區(qū)表的數(shù)據(jù)可以分布在不同的物理設(shè)備上,從而高效地利用多個硬件設(shè)備。 2. 和單個磁盤或者文件系統(tǒng)相比,可以存儲更多數(shù)據(jù)
2、優(yōu)化查詢。在where語句中包含分區(qū)條件時,可以只掃描一個或多個分區(qū)表來提高查詢效率;涉及sum和count語句時,也可以在多個分區(qū)上并行處理,最后匯總結(jié)果。
3、分區(qū)表更容易維護(hù)。例如:想批量刪除大量數(shù)據(jù)可以清除整個分區(qū)。
4、可以使用分區(qū)表來避免某些特殊的瓶頸,例如InnoDB的單個索引的互斥訪問,ext3問價你系統(tǒng)的inode鎖競爭等。
十三、分區(qū)表的限制因素
1、一個表最多只能有1024個分區(qū)
2、MySQL5.1中,分區(qū)表達(dá)式必須是整數(shù),或者返回整數(shù)的表達(dá)式。在MySQL5.5中提供了非整數(shù)表達(dá)式分區(qū)的支持。
3、如果分區(qū)字段中有主鍵或者唯一索引的列,那么多有主鍵列和唯一索引列都必須包含進(jìn)來。即:分區(qū)字段要么不包含主鍵或者索引列,要么包含全部主鍵和索引列。
4、分區(qū)表中無法使用外鍵約束
5、MySQL的分區(qū)適用于一個表的所有數(shù)據(jù)和索引,不能只對表數(shù)據(jù)分區(qū)而不對索引分區(qū),也不能只對索引分區(qū)而不對表分區(qū),也不能只對表的一部分?jǐn)?shù)據(jù)分區(qū)。
十四、如何判斷當(dāng)前MySQL是否支持分區(qū)?
命令:show variables like '%partition%' 運(yùn)行結(jié)果:
mysql> show variables like'%partition%';+-------------------+-------+| Variable_name |Value|+-------------------+-------+|have_partitioning| YES |+-------------------+-------+1rowinset (0.00sec)
have_partintioning 的值為YES,表示支持分區(qū)。
十五、MySQL支持的分區(qū)類型有哪些?
1、RANGE分區(qū):這種模式允許將數(shù)據(jù)劃分不同范圍。例如可以將一個表通過年份劃分成若干個分區(qū)
2、LIST分區(qū):這種模式允許系統(tǒng)通過預(yù)定義的列表的值來對數(shù)據(jù)進(jìn)行分割。按照List中的值分區(qū),與RANGE的區(qū)別是,range分區(qū)的區(qū)間范圍值是連續(xù)的。
3、HASH分區(qū) :這中模式允許通過對表的一個或多個列的Hash Key進(jìn)行計(jì)算,最后通過這個Hash碼不同數(shù)值對應(yīng)的數(shù)據(jù)區(qū)域進(jìn)行分區(qū)。例如可以建立一個對表主鍵進(jìn)行分區(qū)的表。
4、KEY分區(qū) :上面Hash模式的一種延伸,這里的Hash Key是MySQL系統(tǒng)產(chǎn)生的。
十六、四種隔離級別
1、Serializable (串行化):可避免臟讀、不可重復(fù)讀、幻讀的發(fā)生。
2、Repeatable read (可重復(fù)讀):可避免臟讀、不可重復(fù)讀的發(fā)生。
3、Read committed (讀已提交):可避免臟讀的發(fā)生。
4、Read uncommitted (讀未提交):最低級別,任何情況都無法保證。。
十七、關(guān)于MVVC
MySQL InnoDB存儲引擎,實(shí)現(xiàn)的是基于多版本的并發(fā)控制協(xié)議——MVCC (Multi-Version Concurrency Control) (注:與MVCC相對的,是基于鎖的并發(fā)控制,Lock-Based Concurrency Control)。MVCC最大的好處:讀不加鎖,讀寫不沖突。在讀多寫少的OLTP應(yīng)用中,讀寫不沖突是非常重要的,極大的增加了系統(tǒng)的并發(fā)性能,現(xiàn)階段幾乎所有的RDBMS,都支持了MVCC。
1、LBCC:Lock-Based Concurrency Control,基于鎖的并發(fā)控制。
2、MVCC:Multi-Version Concurrency Control,基于多版本的并發(fā)控制協(xié)議。純粹基于鎖的并發(fā)機(jī)制并發(fā)量低,MVCC是在基于鎖的并發(fā)控制上的改進(jìn),主要是在讀操作上提高了并發(fā)量。
十八、在MVCC并發(fā)控制中,讀操作可以分成兩類
1、快照讀 (snapshot read):讀取的是記錄的可見版本 (有可能是歷史版本),不用加鎖(共享讀鎖s鎖也不加,所以不會阻塞其他事務(wù)的寫)。
2、當(dāng)前讀 (current read):讀取的是記錄的最新版本,并且,當(dāng)前讀返回的記錄,都會加上鎖,保證其他事務(wù)不會再并發(fā)修改這條記錄。
十九、行級鎖定的優(yōu)點(diǎn)
1、當(dāng)在許多線程中訪問不同的行時只存在少量鎖定沖突。
2、回滾時只有少量的更改
3、可以長時間鎖定單一的行。
二十、行級鎖定的缺點(diǎn)
1、比頁級或表級鎖定占用更多的內(nèi)存。
2、當(dāng)在表的大部分中使用時,比頁級或表級鎖定速度慢,因?yàn)槟惚仨毇@取更多的鎖。
3、如果你在大部分?jǐn)?shù)據(jù)上經(jīng)常進(jìn)行GROUP BY操作或者必須經(jīng)常掃描整個表,比其它鎖定明顯慢很多。
4、用高級別鎖定,通過支持不同的類型鎖定,你也可以很容易地調(diào)節(jié)應(yīng)用程序,因?yàn)槠滏i成本小于行級鎖定。
二十一、MySQL優(yōu)化
1、開啟查詢緩存,優(yōu)化查詢
2、explain你的select查詢,這可以幫你分析你的查詢語句或是表結(jié)構(gòu)的性能瓶頸。EXPLAIN 的查詢結(jié)果還會告訴你你的索引主鍵被如何利用的,你的數(shù)據(jù)表是如何被搜索和排序的
3、當(dāng)只要一行數(shù)據(jù)時使用limit 1,MySQL數(shù)據(jù)庫引擎會在找到一條數(shù)據(jù)后停止搜索,而不是繼續(xù)往后查少下一條符合記錄的數(shù)據(jù)
4、為搜索字段建索引
5、使用 ENUM 而不是 VARCHAR,如果你有一個字段,比如“性別”,“國家”,“民族”,“狀態(tài)”或“部門”,你知道這些字段的取值是有限而且固定的,那么,你應(yīng)該使用 ENUM 而不是VARCHAR。
6、Prepared StatementsPreparedStatements很像存儲過程,是一種運(yùn)行在后臺的SQL語句集合,我們可以從使用 prepared statements 獲得很多好處,無論是性能問題還是安全問題。Prepared Statements 可以檢查一些你綁定好的變量,這樣可以保護(hù)你的程序不會受到“SQL注入式”攻擊
7、垂直分表
8、選擇正確的存儲引擎
二十二、key和index的區(qū)別
1、key 是數(shù)據(jù)庫的物理結(jié)構(gòu),它包含兩層意義和作用,一是約束(偏重于約束和規(guī)范數(shù)據(jù)庫的結(jié)構(gòu)完整性),二是索引(輔助查詢用的)。包括primary key, unique key, foreign key 等
2、index是數(shù)據(jù)庫的物理結(jié)構(gòu),它只是輔助查詢的,它創(chuàng)建時會在另外的表空間(mysql中的innodb表空間)以一個類似目錄的結(jié)構(gòu)存儲。索引要分類的話,分為前綴索引、全文本索引等;
二十三、Mysql 中 MyISAM 和 InnoDB 的區(qū)別有哪些?
區(qū)別:
1、InnoDB支持事務(wù),MyISAM不支持,對于InnoDB每一條SQL語言都默認(rèn)封裝成事務(wù),自動提交,這樣會影響速度,所以最好把多條SQL語言放在begin和commit之間,組成一個事務(wù);
2、InnoDB支持外鍵,而MyISAM不支持。對一個包含外鍵的InnoDB表轉(zhuǎn)為MYISAM會失敗;
3、InnoDB是聚集索引,數(shù)據(jù)文件是和索引綁在一起的,必須要有主鍵,通過主鍵索引效率很高。但是輔助索引需要兩次查詢,先查詢到主鍵,然后再通過主鍵查詢到數(shù)據(jù)。因此,主鍵不應(yīng)該過大,因?yàn)橹麈I太大,其他索引也都會很大。而MyISAM是非聚集索引,數(shù)據(jù)文件是分離的,索引保存的是數(shù)據(jù)文件的指針。主鍵索引和輔助索引是獨(dú)立的。
4、InnoDB不保存表的具體行數(shù),執(zhí)行select count(*) from table時需要全表掃描。而MyISAM用一個變量保存了整個表的行數(shù),執(zhí)行上述語句時只需要讀出該變量即可,速度很快;
5、Innodb不支持全文索引,而MyISAM支持全文索引,查詢效率上MyISAM要高;
如何選擇:
1、是否要支持事務(wù),如果要請選擇innodb,如果不需要可以考慮MyISAM;
2、如果表中絕大多數(shù)都只是讀查詢,可以考慮MyISAM,如果既有讀寫也挺頻繁,請使用InnoDB。
3、系統(tǒng)奔潰后,MyISAM恢復(fù)起來更困難,能否接受;
4、MySQL5.5版本開始Innodb已經(jīng)成為Mysql的默認(rèn)引擎(之前是MyISAM),說明其優(yōu)勢是有目共睹的,如果你不知道用什么,那就用InnoDB,至少不會差。
二十四、數(shù)據(jù)庫表創(chuàng)建注意事項(xiàng)
1、字段名及字段配制合理性
剔除關(guān)系不密切的字段;
字段命名要有規(guī)則及相對應(yīng)的含義(不要一部分英文,一部分拼音,還有類似a.b.c這樣不明含義的字段);
字段命名盡量不要使用縮寫(大多數(shù)縮寫都不能明確字段含義);
字段不要大小寫混用(想要具有可讀性,多個英文單詞可使用下劃線形式連接);
字段名不要使用保留字或者關(guān)鍵字;
保持字段名和類型的一致性;
慎重選擇數(shù)字類型;
給文本字段留足余量;
2、系統(tǒng)特殊字段處理及建成后建議
添加刪除標(biāo)記(例如操作人、刪除時間);
建立版本機(jī)制;
3、表結(jié)構(gòu)合理性配置
多型字段的處理,就是表中是否存在字段能夠分解成更小獨(dú)立的幾部分(例如:人可以分為男人和女人);
多值字段的處理,可以將表分為三張表,這樣使得檢索和排序更加有調(diào)理,且保證數(shù)據(jù)的完整性!
4、其它建議
對于大數(shù)據(jù)字段,獨(dú)立表進(jìn)行存儲,以便影響性能(例如:簡介字段);
使用varchar類型代替char,因?yàn)関archar會動態(tài)分配長度,char指定長度是固定的;
給表創(chuàng)建主鍵,對于沒有主鍵的表,在查詢和索引定義上有一定的影響;
避免表字段運(yùn)行為null,建議設(shè)置默認(rèn)值(例如:int類型設(shè)置默認(rèn)值為0)在索引查詢上,效率立顯;
建立索引,最好建立在唯一和非空的字段上,建立太多的索引對后期插入、更新都存在一定的影響(考慮實(shí)際情況來創(chuàng)建);
-
操作系統(tǒng)
+關(guān)注
關(guān)注
37文章
6892瀏覽量
123737 -
數(shù)據(jù)庫
+關(guān)注
關(guān)注
7文章
3846瀏覽量
64680 -
MySQL
+關(guān)注
關(guān)注
1文章
829瀏覽量
26740
原文標(biāo)題:面試中有哪些經(jīng)典的數(shù)據(jù)庫問題?
文章出處:【微信號:DBDevs,微信公眾號:數(shù)據(jù)分析與開發(fā)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論