推挽是一個輸出電路。
這是一個輸出電路按功放輸出級放大元件的數量,可以分為單端放大器和推挽放大器。
單端放大器的輸出級由一只放大元件(或多只元件但并聯成一組)完成對信號正負兩個半周的放大。單端放大機器只能采取甲類工作狀態。
推挽放大器的輸出級有兩個“臂”(兩組放大元件),一個“臂”的電流增加時,另一個“臂”的電流則減小,二者的狀態輪流轉換。對負載而言,好像是一個“臂”在推,一個“臂”在拉,共同完成電流輸出任務。盡管甲類放大器可以采用推挽式放大,但更常見的是用推挽放大構成乙類或甲乙類放大器。
當輸出高電平時,也就是下級負載門輸入高電平時,輸出端的電流將是下級門從本級電源經VT3拉出。這樣一來,輸出高低電平時,VT3 一路和VT5 一路將交替工作,從而減低了功耗,提高了每個管的承受能力。又由于不論走哪一路,管子導通電阻都很小,使RC常數很小,轉變速度很快。因此,推拉式輸出級既提高電路的負載能力,又提高開關速度。供你參考。
如果輸出級的有兩個三極管,始終處于一個導通、一個截止的狀態,也就是兩個三級管推挽相連,這樣的電路結構稱為推拉式電路或圖騰柱(Totem- pole)輸出電路。當輸出低電平時,也就是下級負載門輸入低電平時,輸出端的電流將是下級門灌入VT5
CCFL推挽式緩沖電路
無抑制時的漏極電壓
圖1詳細列出了使用15V直流電源工作時,推挽式驅動器的典型柵極驅動電壓和漏極電壓波形。在推挽式驅動結構中,當互補MOSFET開啟時,正常情況下漏極電壓會升至直流電源電壓的兩倍(或者本例中的30V)。然而,如圖1所示,尖峰電壓卻高達54V。在MOSFET關閉以及互補MOSFET開啟時,n通道功率MOSFET的漏極也會出現尖峰電壓。
圖1. 無緩沖電路時的漏極電壓
可抑制漏極尖峰電壓的電路及設計
可以通過為每個漏極添加簡單的RC網絡來抑制尖峰電壓,如圖2所示。合適的電阻(R)和電容(C)值可由如下過程確定。在闡述該過程之后,將有一個實例演示如何降低圖1所示的尖峰電壓。
圖2. 推挽驅動器的漏極緩沖電路
確定合適的緩沖電路RC值
測量尖峰諧振頻率。見圖3所示實例。
在MOSFET的漏極和源極上并聯一個電容(無電阻,僅電容),調整電容值,直到尖峰諧振頻率降低到原來的二分之一。此時,該電容值為產生尖峰電壓的寄生電容值的三倍。
因為寄生電容值已知,寄生電感值可用如下等式求得:
L = 1 / [(2πF)2 x C],其中,F=諧振頻率,C = 寄生電容值
現在,寄生電容和電感值都已知,諧振回路的特征阻抗可由如下等式求得:
Z = SQRT(L/C),其中,L = 寄生電感值,C = 寄生電容值
RC緩沖電路中的電阻值應該接近特征阻抗,電容值應該是寄生電容值的四到十倍。使用更大的電容可以輕微降低電壓過沖,但要以更多的功率耗散和更低的逆變效率為代價。
計算RC緩沖器元件值
在這部分,使用前面提到的五個步驟,可以計算出組成緩沖電路、用來降低圖1中尖峰電壓的適當電阻電容值。
找出諧振尖峰電壓的頻率。圖3顯示出它大約為35MHz。
圖3. 無緩沖電路的諧振尖峰電壓的頻率
在漏極和地線之間并聯一個電容,以將諧振頻率降至大約一半(17.5MHz)。如圖4所示,330pF的并聯電容即可將諧振頻率降低至大約17.5MHz。最佳電容值可以通過嘗試并聯不同容量的電容來確定。最好從小容量電容開始(比如100pF),然后逐漸增大。
因為330pF的并聯電容即可將諧振頻率降至原來的二分之一,寄生電容值應該是其三分之一(大約110pF)。
圖4. 提供330pF并聯電容時的諧振尖峰電壓頻率
計算寄生電感值。
寄生電感 = L = 1 / [(2 x 3.14 x 35MHz)2 * 110pF] = 0.188μH
計算特征阻抗。
特征阻抗 = Z = SQRT (0.188μH / 110pF) = 41
選擇適當的電阻和電容值。緩沖電路中的電阻值R應該接近41Ω,而電容值C應該在寄生電容110pF的四到十倍之間。在本例中,我們選擇電容C為1000pF,大約為寄生電容值的九倍。
圖5顯示了加入由39Ω電阻及1000pF電容組成的緩沖電路后的結果。
圖5. 加入RC緩沖電路(39Ω,1000pF)后的漏極電壓
結論
本應用筆記說明,通過一些簡單的經驗測量,即可確定推挽式驅動結構中阻容緩沖電路的適當值。該緩沖電路可以大大降低功率MOSFET漏極不期望出現的尖峰電壓。
評論
查看更多