近幾年,大型電池的市場(chǎng)需求日益高漲。對(duì)此起推動(dòng)作用的包括今后有望普及的純電動(dòng)汽車(chē),以及2011年3月11日發(fā)生東日本大地震后備受關(guān)注的定置用蓄電系統(tǒng)中使用的大型充電電池。
此前的研發(fā)主角一直是用于便攜終端的充電電池。但是,由于每臺(tái)產(chǎn)品所需要的電池容量和性能大大超出便攜用途,所以用于汽車(chē)及定置用途的大型電池逐漸成為研究的主要對(duì)象。
汽車(chē)和定置用途等使用的大型電池除了便攜終端用電池所要求的高容量化之外,對(duì)長(zhǎng)壽命化和高安全性也有很高的要求(圖1)。比如壽命,便攜終端用鋰離子充電電池只要能在產(chǎn)品約為2年的換購(gòu)周期內(nèi)維持性能即可。而大型電池則必須保證10年或20年的更長(zhǎng)期間。
圖1:面向汽車(chē)用途和定置市場(chǎng)發(fā)生變化的電池開(kāi)發(fā)
汽車(chē)用途和定置市場(chǎng)今后將迅速擴(kuò)大,因此電池開(kāi)發(fā)也開(kāi)始發(fā)生巨變。不僅是高容量化,從安全性和壽命的角度出發(fā),全固體電池開(kāi)始受到關(guān)注。此外,由于資源問(wèn)題,鈉離子電池的開(kāi)發(fā)加速。
據(jù)調(diào)查公司富士經(jīng)濟(jì)的調(diào)查結(jié)果,雖然純電動(dòng)汽車(chē)(EV)目前的市場(chǎng)規(guī)模為每年幾萬(wàn)輛,但“2020年以后會(huì)逐漸擴(kuò)大,到2030年全球的EV將達(dá)到1374萬(wàn)輛”。預(yù)計(jì)定置用途的用量也將隨著可再生能源的普及而成倍增長(zhǎng)。
充電電池市場(chǎng)激增的負(fù)面影響是可能出現(xiàn)資源短缺問(wèn)題。尤其是稀有金屬鋰(Li),業(yè)內(nèi)一致認(rèn)為“總有一天鋰也會(huì)出現(xiàn)供應(yīng)短缺的問(wèn)題”(某電池相關(guān)人士)。
另外,越來(lái)越多的研究人員開(kāi)始開(kāi)發(fā)不使用鈷(Co)和鎳(Ni)等高價(jià)材料的充電電池,這些材料目前多被用于作為鋰離子充電電池的正極材料。
關(guān)于在電池的性能中最為重要的大容量化指標(biāo),被稱(chēng)為“后鋰離子充電電池”的全固體電池和鋰空氣電池紛紛發(fā)表了取得的成果,這些發(fā)表十分受歡迎,甚至出現(xiàn)了站著聽(tīng)講的聽(tīng)眾。從發(fā)表內(nèi)容中可以了解到,為了在2020~2030年前后實(shí)用化,并實(shí)現(xiàn)500Wh/kg以上的能量密度,電池開(kāi)發(fā)人員正在推進(jìn)基礎(chǔ)研發(fā)(圖2)。
圖2:計(jì)劃2020年實(shí)現(xiàn)300Wh/kg的能量密度
目前推進(jìn)的材料開(kāi)發(fā)的目標(biāo)是,2020年在確保安全性的同時(shí)使能量密度達(dá)到300Wh/kg。2030年使Li-S電池和鋰空氣電池等500Wh/kg以上的新一代電池實(shí)現(xiàn)實(shí)用化。
不過(guò),要想一下子實(shí)現(xiàn)具備500Wh/kg能量密度的新一代電池并非易事。因此,首先打算在2015~2020年前后實(shí)現(xiàn)目前約2倍能量密度、即200~300Wh/kg的改良型鋰離子充電電池也在推進(jìn)開(kāi)發(fā)。
改良型鋰離子充電電池打算將正負(fù)極換成更高容量的材料來(lái)實(shí)現(xiàn)。正極材料方面,采用有機(jī)化合物的有機(jī)充電電池領(lǐng)域的發(fā)表每次都會(huì)增加。這種電池可以利用低價(jià)有機(jī)化合物,但此前循環(huán)特性存在課題,不過(guò)在本屆電池研討會(huì)上有報(bào)告宣布,充放電3萬(wàn)次以上仍可以作為充電電池使用。
負(fù)極材料有硅(Si)和錫(Sn)等比容量為目前2倍以上即1000mAh/g的候補(bǔ)材料。長(zhǎng)壽命化方面的難度最高。
從正極到固體電解質(zhì)
鈉離子充電電池的發(fā)表數(shù)量激增至3倍是有原因的。那就是,最近數(shù)年鈉離子充電電池的特性得到大幅提高(圖3)。此前采用鈉離子的充電電池只有日本礙子(NGK)已經(jīng)商用化的鈉硫(NAS)電池以及瑞士MES-DEA公司的鈉鎳氯化物充電電池。不過(guò),這些電池組合使用了熔解鈉和陶瓷固體電解質(zhì),因此需要300℃的工作溫度。
圖3:鈉離子充電電池的研究開(kāi)發(fā)日益活躍
鈉離子充電電池可在常溫下穩(wěn)定工作,因此探索高容量材料的研究開(kāi)發(fā)日益活躍。
可用于鈉離子充電電池的正極材料、負(fù)極材料及電解液的候補(bǔ)材料等從2005年前后開(kāi)始陸續(xù)發(fā)現(xiàn),現(xiàn)在已經(jīng)具備可在常溫下實(shí)現(xiàn)毫不遜色于鋰離子充電電池容量的實(shí)力。
2005年,九州大學(xué)的研發(fā)小組宣布,通過(guò)在正極材料中采用α-NaFeO2,能實(shí)現(xiàn)可逆性鈉離子的脫/嵌,鈉的平均電壓高達(dá)3.3V,由此開(kāi)始受到關(guān)注。
可利用硬碳
更具有沖擊力的是,負(fù)極材料通過(guò)采用硬碳也能實(shí)現(xiàn)鈉離子的嵌入。此前一直作為鋰離子充電電池主流負(fù)極材料的石墨無(wú)法進(jìn)行鈉離子嵌入。
另外,2009年春,東京理科大學(xué)駒場(chǎng)研究室發(fā)現(xiàn)了可用于硬碳負(fù)極而且充放電循環(huán)特性出色的電解液和添加劑,研究取得了大幅進(jìn)展。
具體而言,研究了碳酸乙烯酯(EC)、碳酸亞丙酯(PC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)及碳酸二乙酯(DEC)等鋰離子充電電池常用的碳酸酯類(lèi)溶劑。發(fā)現(xiàn)在PC和EC:DEC的混合溶液中,能以200mAh/g以上的高容量實(shí)現(xiàn)100次以上的循環(huán)壽命(圖4)。
圖4:通過(guò)改變電解液提高充放電循環(huán)特性
東京理科大學(xué)通過(guò)將PC和EC:DEC用于電解液,實(shí)現(xiàn)了充放電循環(huán)特性出色的鈉離子充電電池,并于2009年春進(jìn)行了相關(guān)發(fā)表(a)。如果是鋰離子充電電池利用的EC:DMC的話(huà),電解液立即就會(huì)劣化(b)。
眾所周知,鋰離子充電電池為了在石墨和電解液間獲得良好的界面,會(huì)在電解液中添加碳酸亞乙烯酯(VC),以便在石墨上形成鈍化膜。但將VC用于鈉離子充電電池的話(huà),電解液會(huì)立即劣化。東京理科大學(xué)宣布,通過(guò)添加氟代碳酸乙烯酯(FEC),可大幅抑制電解液的分解,有望改善電池壽命。
鈉離子比鋰離子的離子半徑大,過(guò)去認(rèn)為在結(jié)晶構(gòu)造之間難以移動(dòng),高速率的充放電特性低,其實(shí)并非如此。“離子半徑大則表面電荷密度低,離子自身的傳導(dǎo)率高”(東京理科大學(xué)理學(xué)部應(yīng)用化學(xué)科副教授駒場(chǎng)慎一)。
駒場(chǎng)研究室利用正極采用NaNi1/2Mn1/2O2、負(fù)極采用硬碳的紐扣型電池實(shí)施了試驗(yàn),經(jīng)確認(rèn),即使進(jìn)行高速充放電,與低速充放電相比容量的降低程度也比較小(圖5)。駒場(chǎng)表示,這是“因?yàn)殡娊庖褐械妮斔湍芰Ρ蠕囯x子還要優(yōu)異”。
圖5:高速充放電特性出色的鈉離子充電電池利用東京理科大學(xué)試制的紐扣型電池進(jìn)行充放電的結(jié)果顯示,鈉離子充電電池在高速充放電中也具備優(yōu)異的特性。
利用鐵的氧化還原反應(yīng)
由于負(fù)極可利用硬碳,與鋰離子充電電池研究一樣,探索可實(shí)現(xiàn)高容量化正極材料的開(kāi)發(fā)也日益活躍。最近備受關(guān)注的是,可實(shí)現(xiàn)高容量化、且不同于鋰離子充電電池的正極材料。其中之一就是可利用鐵的3價(jià)和4價(jià)氧化還元反應(yīng)。鋰離子充電電池不會(huì)發(fā)生鐵氧化還原反應(yīng),只能利用鎳、錳和鈷等過(guò)渡元素的氧化還原反應(yīng)。
實(shí)際上,東京理科大學(xué)發(fā)布的鐵類(lèi)層狀正極材料Na2/3(Fe1/2Mn1/2)O2的比容量為190mAh/g注1)。特點(diǎn)是,顯示出了鈉和氧形成三棱柱網(wǎng)格的P2型層狀構(gòu)造。
注1) 東京理科大學(xué)以“層狀含鈉鐵錳類(lèi)氧化物的結(jié)晶構(gòu)造和電氣化學(xué)特性”為題發(fā)表了演講[演講序號(hào):1E29]。
僅以鐵構(gòu)成的NaFeO2一般采用鈉和氧形成八面體網(wǎng)格的O3型積層構(gòu)造,以3.5V以上電壓充電時(shí),隨著鐵離子的移動(dòng)會(huì)發(fā)生不可逆相變。而P2型Na2/3(Fe1/2Mn1/2)O2即使充電電壓超過(guò)3.5V,也可以根據(jù)鐵的氧化還原反應(yīng)獲得可逆容量,充電電壓提高至4.5V時(shí)仍能維持層狀構(gòu)造。
東京理科大學(xué)的研發(fā)小組認(rèn)為,雖然Na2/3(Fe1/2Mn1/2)O2的平均電壓只有2.75V,但比容量高,因此能確保能量密度超過(guò)正極材料采用LiFePO4的鋰離子充電電池(圖6)。另外,目前通過(guò)使鐵和錳的比例各占一半來(lái)維持P2型,“如果減少錳的用量后仍能維持P2型的話(huà),還能進(jìn)一步提高容量”(東京理科大學(xué)綜合研究機(jī)構(gòu)講師藪內(nèi)直明)。
圖6:利用新的正極材料實(shí)現(xiàn)190mAh/g的比容量
東京理科大學(xué)在本屆電池研討會(huì)上就擁有高比容量的正極材料Na2/3(Fe1/2Mn1/2)O2發(fā)表了演講。鈉和氧以三棱柱構(gòu)造(P2型)排列(a)。通過(guò)錳和鐵的氧化還原反應(yīng)實(shí)現(xiàn)了190mAh/g的高容量(b)。雖然新材料的平均電位稍低,只有2.75V,但作為電池可實(shí)現(xiàn)高能量密度(c)。
意在高壓化的豐田
鈉離子充電電池在制成單元時(shí)與鋰離子充電電池相比存在電壓低的課題。因此,業(yè)界還出現(xiàn)了提高電壓的動(dòng)向。豐田在本屆電池研討會(huì)上就電位為4V以上的含鈉過(guò)渡金屬磷酸鹽發(fā)表了演講(圖7)注2)。該公司就Na4M3(PO4)2P2O7,以鎳、鈷、錳比較了M過(guò)渡金屬部分。結(jié)果顯示,采用鈷的Na4Co3(PO4)2P2O7的容量最高,為95mAh/g。而且,不但確保了4V以上的放電,充放電100次后也沒(méi)有出現(xiàn)容量劣化。
圖7:具備4V以上電位的Na4Co3(PO4)2P2O7
豐田在電池研討會(huì)上就具備4V以上電位的Na4Co3(PO4)2P2O7發(fā)表了演講(a,b)。
注2) 豐田以“鈉電池用新正極活性物質(zhì)Na4M3(PO4)2P2O7〔M=Ni,Co,Mn〕的電氣化學(xué)特性”為題發(fā)表了演講[演講序號(hào):2E07]。
不僅是正極材料的開(kāi)發(fā),鈉離子充電電池的研究范圍在不斷擴(kuò)大。在本屆電池研討會(huì)上,因采用鋰離子的全固體電池研究而聞名的大阪府立大學(xué)發(fā)布了鈉離子全固體電池的研究成果注3)。固體電解質(zhì)采用鈉離子導(dǎo)電率為10-4S/cm的Na3PS4。在該固體電解質(zhì)的基礎(chǔ)之上采用鈦硫(TiS)正極和鈉錫(Na-Sn)合金負(fù)極的全固體電池在室溫下使用時(shí),雖然首次的不可逆容量較高,但第二次以后就可以穩(wěn)定地反復(fù)充電了(圖8)。
圖8:鈉離子全固體電池亮相
大阪府立大學(xué)在電池研討會(huì)上就固體電解質(zhì)采用Na3PS4的全固體電池發(fā)表了演講(a,b)。與初始放電容量相比,第二次以后的放電容量大幅降低,不過(guò)第二次以后表現(xiàn)出了穩(wěn)定的循環(huán)特性(c)。
注3) 大阪府立大學(xué)以“采用Na3PS4固體電解質(zhì)的全固體鈉硫電池試制”為題發(fā)表了演講[演講序號(hào):2E21]。
另外,還試制了正極采用高容量硫(S)的電池。S和放電生成物Na2S是絕緣體,因此將S或Na2S與導(dǎo)電材料乙炔黑和固體電解質(zhì)以1:1:2的重量比進(jìn)行了混合。由此確認(rèn),1000mAh/g以上的高容量全固體鈉硫電池可以在室溫下正常工作。
固體電解質(zhì)和負(fù)極取得進(jìn)展
雖然采用鈉離子的全固體電池也已經(jīng)逐漸展開(kāi)研究,但采用鋰離子的全固體電池的研究更加活躍。
在全固體電池的研究中,如何提高表示固體電解質(zhì)鋰的擴(kuò)散速度的鋰離子導(dǎo)電率是個(gè)重要課題。在最近的研究中,東京工業(yè)大學(xué)、豐田、高能加速研究機(jī)構(gòu)的研發(fā)小組發(fā)現(xiàn)了鋰離子導(dǎo)電率與有機(jī)電解液相當(dāng)?shù)奈镔|(zhì)。主導(dǎo)研究的是東京工業(yè)大學(xué)研究生院綜合理工學(xué)研究科物質(zhì)電子化學(xué)專(zhuān)業(yè)的菅野了次教授。
菅野等人發(fā)表的是硫化物類(lèi)固體電解質(zhì)的一種——Li10GeP2S12。鋰離子導(dǎo)電率在室溫(27℃)下非常高,為1.2×10-2S/cm。豐田試制了采用該固體電解質(zhì)的全固體電池,并于2012年10月公開(kāi)。豐田證實(shí)“實(shí)現(xiàn)了原產(chǎn)品5倍”的輸出密度。
在本屆電池研討會(huì)上,以豐田為首,出光興產(chǎn)、三井金屬礦業(yè)、村田制作所、三星橫濱研究所及住友化學(xué)等也發(fā)表了論文。
豐田與大阪府立大學(xué)的辰巳砂研究室報(bào)告了可提高全固體電池壽命的研究成果 注4)。通過(guò)采用7Li2O·68Li2S·25P2S5,與該公司此前推進(jìn)研究的75Li2S·25P2S5相比,實(shí)現(xiàn)了比較高的容量維持率。雙方試制了采用不同固體電解質(zhì)的全固體電池,以最大4V電壓進(jìn)行充電后,在60℃下保存了1個(gè)月,采用7Li2O·68Li2S·25P2S5的電池的反應(yīng)電阻沒(méi)有升高,約為當(dāng)初的0.9倍,維持了86%的放電容量。而采用75Li2S·25P2S5的電池的反應(yīng)電阻上升至當(dāng)初的約2.0倍,放電容量維持率降到72%(圖9)。
圖9:具備高容量維持率的固體電解質(zhì)
豐田確認(rèn),作為全固體電池的固體電解質(zhì),具備高耐水性的75Li2S·25P2S5在60℃的保存試驗(yàn)中,內(nèi)部抵抗難以上升(a)。試制充電電池測(cè)量容量變化時(shí)發(fā)現(xiàn),1個(gè)月后保持了86%的容量(b)。(圖由《日經(jīng)電子》根據(jù)豐田的資料制作)
注4) 豐田與大阪府立大學(xué)以“Li 2OLi2S-P2S5類(lèi)玻璃固體電解質(zhì)的電池特性”為題發(fā)表了演講[演講序號(hào):2H15]。
據(jù)豐田介紹,“7 Li 2O·68Li2S·25P2S5耐水性高,活性物質(zhì)和固體電解質(zhì)界面能夠穩(wěn)定。因此可抑制硫化氫的產(chǎn)生量,為電池的長(zhǎng)壽命化做出了貢獻(xiàn)”。此次的實(shí)驗(yàn)是在60℃下實(shí)施的,由此可見(jiàn),在高溫時(shí)也能抑制電池劣化。
負(fù)極材料采用金屬磷化物
固體電解質(zhì)與正極材料的組合備受關(guān)注的全固體電池還提出了高容量負(fù)極候選。就金屬磷化物發(fā)表演講的是大阪府立大學(xué)和出光興產(chǎn)的研發(fā)小組注5)。目前作為高容量負(fù)極受到關(guān)注的硅和錫雖然容量高,但與鋰制成合金時(shí)體積變化較大,難以延長(zhǎng)壽命。
注5) 大阪府立大學(xué)與出光興產(chǎn)以“全固體鋰充電電池的SnNa4PS4PNa3PS4負(fù)極微細(xì)組織觀察”為題發(fā)表了演講[演講序號(hào):2H28]。
而金屬磷化物的特點(diǎn)是能形成金屬微粒子和Li3P。Li3P具有矩陣構(gòu)造,有望抑制鋰與金屬微粒子的合金化反應(yīng)造成的體積變化。另外,Li3P因鋰離子導(dǎo)電性高,僅利用活性物質(zhì)即可構(gòu)成負(fù)極的電極部分。
此次發(fā)表的論文中的負(fù)極材料采用了磷化錫(Sn4P3)。由該負(fù)極材料與Li2S-P2S5類(lèi)固體電解質(zhì)及鋰銦合金正極構(gòu)成的試驗(yàn)單元,即使負(fù)極電極中不含電解質(zhì)和導(dǎo)電添加劑也能作為充電電池使用,具備950mAh/g的初期放電量(圖10)。與采用Sn4P3、固體電解質(zhì)和乙炔黑以40:60:6重量比混合的電極復(fù)合體的單元相比,電極單位重量的容量約為2倍。
圖10:具備導(dǎo)電性的負(fù)極材料
大阪府立大學(xué)發(fā)表的全固體電池采用具備導(dǎo)電性的Sn4P3。僅利用Sn4P3就可以作為全固體電池使用(a)。初次放電后和充電后仍與固體電解質(zhì)形成了良好的界面(b~d)。
此外,觀察充放電前以及初次放電后和充電后的電極發(fā)現(xiàn),雖然出現(xiàn)了100μm級(jí)的裂紋,但Sn4P3與固體電解質(zhì)之間保持了出色的接觸界面。大阪府立大學(xué)認(rèn)為,這要得益于Li2S-P2S5類(lèi)固體電解質(zhì)的柔軟性。
空氣電池采用新的離子液體
比全固體電池的潛力還要高的是被稱(chēng)為“終極電池”的鋰空氣電池。鋰空氣電池的正極采用空氣中的氧,因此可大幅提高能量密度。不過(guò),有觀點(diǎn)指出空氣極的還元反應(yīng)存在難題等。
在本屆電池研討會(huì)上,豐田宣布通過(guò)在鋰空氣電池的電解液溶劑中采用離子液體N,N─二乙基─N─甲基─N─甲氧基銨雙三氟甲基磺酰胺(DEME-TFSA),可實(shí)現(xiàn)與有機(jī)溶劑相當(dāng)?shù)娜萘浚▓D11)注6)。
圖11:與有機(jī)溶劑差不多的離子液體
豐田通過(guò)在鋰空氣電池的電解液溶劑中采用乙醚類(lèi)離子液體DEME-TFSA,實(shí)現(xiàn)了與有機(jī)溶劑相當(dāng)?shù)娜萘俊?/p>
注6) 豐田與豐田中央研究所以“作為L(zhǎng)i-O2電池用電解液的乙醚類(lèi)離子液體”為題發(fā)表了演講[演講序號(hào):2G04]。
鋰空氣電池用電解液溶劑的研發(fā)主流——有機(jī)溶劑雖然有望實(shí)現(xiàn)高容量化,但副反應(yīng)較大而且有揮發(fā)性,因此缺乏穩(wěn)定性。豐田之前采用N─甲基─N─丙基哌啶雙三氟甲磺酰胺(PP13-TFSA)離子液體也確認(rèn)可以像理論上一樣發(fā)生充放電反應(yīng),但一直存在容量低的課題。此次的DEME-TFSA與PP13-TFSA相比有望實(shí)現(xiàn)約3倍的高容量化。
有機(jī)化合物備受期待
雖然著眼于2030年的新一代電池研究相關(guān)的話(huà)題比較多,但旨在提高目前的鋰離子充電電池性能的研究開(kāi)發(fā)勢(shì)頭也絲毫沒(méi)有減退。
目前的鋰離子充電電池正極材料采用鈷酸鋰(LiCoO2)、3元系(LiNiMnCoO2)、錳酸鋰(LiMn2O4)、磷酸鐵鋰(LiFePO4)等(圖12)。不過(guò),這些正極材料的理論容量都在200mAh/g以下。因此,探索容量在200mAh/g以上的新材料,以及為將最大性能提高到理論容量值而在正極材料中添加添加物的開(kāi)發(fā)日益活躍。
圖12:多樣化的正極材料
在本屆電池研討會(huì)上,關(guān)于有機(jī)化合物和固溶體類(lèi)材料等正極材料的發(fā)表有很多。
容量最大提高到1000mAh/g
在通過(guò)采用新材料實(shí)現(xiàn)200mAh/g以上鋰離子充電電池的候補(bǔ)技術(shù)中,關(guān)注度最高的是有機(jī)充電電池。正極采用有機(jī)化合物的有機(jī)充電電池的理論容量最大可達(dá)到近1000mAh/g。而且不使用重金屬。因此具備重量輕,資源限制少的優(yōu)勢(shì)。
不過(guò),有機(jī)充電電池雖然單位重量的能量密度高,但單位體積的能量密度卻比較低。而且,鋰電位大多只有2~3.5V。因此,要想實(shí)現(xiàn)與目前的鋰離子充電電池相同的能量密度,至少要找到具備400~600mAh/g容量的有機(jī)化合物。
村田制作所計(jì)劃有機(jī)化合物“采用紅氨酸,力爭(zhēng)2020年前后實(shí)現(xiàn)業(yè)務(wù)化”(該公司)。紅氨酸如果發(fā)生四電子反應(yīng),就能實(shí)現(xiàn)890mAh/g的理論容量。在本屆電池研討會(huì)上,作為本田技術(shù)研究所與日本Carlit的共同研究成果,展示了正極材料采用紅氨酸的半電池單元的充放電特性(圖13)注7)。初次放電時(shí)的容量為750mAh/g,第二次以后穩(wěn)定在650mAh/g。反復(fù)充放電100次后也保持了430mAh/g的比容量。
圖13:利用有機(jī)化合物實(shí)現(xiàn)高容量化
有機(jī)化合物與現(xiàn)行的材料相比可提高正極的比容量。村田制作所將紅氨酸定位為主要候補(bǔ),已確認(rèn)可將容量密度提高到650mAh/g左右。
注7) 村田制作所與、本田技術(shù)研究所和日本Carlit以“正極活性物質(zhì)采用紅氨酸的高能量密度充電電池”為題發(fā)表了演講[演講序號(hào):3E18]。
松下也是致力于有機(jī)充電電池開(kāi)發(fā)的企業(yè)之一。該公司大幅改善了有機(jī)充電電池的課題——充放電循環(huán)特性注8)。松下發(fā)布的成果是,將擁有四硫富瓦烯(TTF)構(gòu)造的聚合物材料(TTF聚合物)用作正極活性物質(zhì),反復(fù)充放電3萬(wàn)次后仍維持了58%的放電容量。“通過(guò)提高共聚比率,構(gòu)造穩(wěn)定,提高了循環(huán)特性”(該公司)。
注8) 松下以“具備四硫富瓦烯的聚合物正極活性物質(zhì)的電氣化學(xué)特性”為題發(fā)表了演講[演講序號(hào):3E16]
雖然試制電池的放電容量只有114mAh/g,作為有機(jī)充電電池比較低,不過(guò)某電池相關(guān)人士吃驚地表示,“(松下的)成果證明,如果抑制電解液的溶解,有機(jī)充電電池也能實(shí)現(xiàn)出色的充放電循環(huán)壽命”。
除此之外,松下還與京都大學(xué)的吉田研究室共同進(jìn)行了開(kāi)發(fā)。在電池研討會(huì)結(jié)束后的2012年11月19日,發(fā)布了支持30C高速充放電的有機(jī)充電電池(圖14)。采用連接兩個(gè)酮形成環(huán)狀構(gòu)造的環(huán)狀1,2─二酮。酮由碳和氧構(gòu)成,因此無(wú)需擔(dān)心資源短缺,還能降低成本。通過(guò)將酮形成環(huán)狀實(shí)現(xiàn)了穩(wěn)定化。試制電池的容量為231mAh/g,充放電500次后仍保持了83%的容量。
圖14:可高速充放電的有機(jī)充電電池
京都大學(xué)和松下開(kāi)發(fā)出了正極材料采用將兩個(gè)酮連接形成環(huán)狀構(gòu)造的環(huán)狀1,2-二酮的有機(jī)充電電池(a)。支持30C的高速充放電(b)。
固溶體類(lèi)正極材料改善容量降低現(xiàn)象
通過(guò)采用目前主流的鋰氧化物而非有機(jī)化合物的正極材料實(shí)現(xiàn)250mAh/g以上的比容量,而且電壓可提高到5V左右的固溶體類(lèi)正極材料(Li2MnO3-LiMO2)的發(fā)表件數(shù)也急劇增加。該材料在充電前為鋰層與錳等過(guò)渡金屬層各自分開(kāi)的層狀構(gòu)造,進(jìn)行初期充電后,過(guò)渡金屬向鋰層內(nèi)移動(dòng),變?yōu)榧饩瘶?gòu)造。關(guān)于高容量的發(fā)現(xiàn),除了錳等的氧化還原反應(yīng)外,還發(fā)現(xiàn)了氧相關(guān)的電荷補(bǔ)償。
不過(guò),將充電電壓提高到理論值以上容量的4.8V左右后,存在反復(fù)充放電時(shí)容量大幅降低的課題。針對(duì)該課題,日產(chǎn)汽車(chē)等的研發(fā)小組宣布,通過(guò)分階段提高充電電壓并同時(shí)實(shí)施電化學(xué)預(yù)處理,經(jīng)過(guò)幾十次充放電循環(huán)后仍可維持250mhA/g的容量。
在本屆電池研討會(huì)上,神奈川大學(xué)和日產(chǎn)汽車(chē)的研發(fā)小組除電化學(xué)預(yù)處理外,還公布了氧化物表面修飾的效果。比如,通過(guò)采用Al2O3進(jìn)行表面修飾,改善了50℃以上高溫下的充放電循環(huán)特性注9)。50℃時(shí)未加修飾的樣品在充放電25次后,容量維持率降到了83%。而進(jìn)行了表面修飾的樣品充放電40次后容量維持率仍為90%左右。
電壓化將能量密度提高至200Wh/kg以上
在推進(jìn)固溶體類(lèi)正極材料基礎(chǔ)研究的過(guò)程中,作為更接近實(shí)用水平的5V正極材料開(kāi)發(fā)的是鎳錳(Ni-Mn)類(lèi)鋰氧化物。雖然本屆電池研討會(huì)沒(méi)有發(fā)表相關(guān)內(nèi)容,不過(guò)在2012年10月舉行的電氣化學(xué)相關(guān)國(guó)際學(xué)會(huì)“PRiME2012”上,NEC采用將尖晶石型錳酸鋰(LiMn2O4)的一部分換成鎳的Li(Ni0.5Mn1.5)O4試制了單元并進(jìn)行了發(fā)表。
與原來(lái)的LiMn2O4相比電壓可提高0.7V左右,因此單元的能量密度可由原來(lái)的約150Wh/kg提高約30%達(dá)到200Wh/kg以上。
NEC除正極材料外,還新開(kāi)發(fā)了耐高電壓的含氟溶劑,抑制了在正極材料和電解液的界面產(chǎn)生的氧化分解。在組合使用Li(Ni0.5Mn1.54和石墨的單元試驗(yàn)中,在20℃的溫度下進(jìn)行500次充放電循環(huán)試驗(yàn)后,可維持初期容量的約80%。另外,在45℃的高溫下進(jìn)行相同的試驗(yàn)后,確保了約60%的容量維持率。
另一方面,富士重工業(yè)著眼于組合使用Li(Ni0.5Mn1.54和石墨的單元在初期充電時(shí)的不可逆容量的抑制注10)。該公司以前就利用預(yù)摻雜鋰離子電容器等采用的鋰的技術(shù)。以前的預(yù)摻雜技術(shù)是在負(fù)極封裝鋰箔,鋰箔與石墨的電位差較小,摻雜需要較長(zhǎng)時(shí)間。
注10) 富士重工業(yè)以“采用預(yù)摻雜技術(shù)的鋰離子充電電池的高能量密度化”為題發(fā)表了演講[演講序號(hào):3C22]
因此,富士重工業(yè)開(kāi)發(fā)出了采用Li(Ni0.5Mn1.54時(shí)在正極側(cè)封裝鋰箔,并預(yù)摻雜鋰的技術(shù)。Li(Ni0.5Mn1.54的鎳側(cè)有鋰,而錳側(cè)無(wú)鋰,利用鎳側(cè)與錳側(cè)約2V的電位差可從正極側(cè)摻雜鋰。
比較進(jìn)行了預(yù)摻雜和未進(jìn)行預(yù)摻雜的單元初期充放電容量發(fā)現(xiàn),進(jìn)行預(yù)摻雜后抵消了負(fù)極的不可逆容量,比容量提高27%(圖15)。
圖15:從正極預(yù)摻雜鋰
富士重工業(yè)開(kāi)發(fā)出了從正極預(yù)摻雜鋰的技術(shù)。可以防止負(fù)極石墨的不可逆容量造成的容量降低。
此外,富士重工業(yè)還與日本化學(xué)工業(yè)共同發(fā)表了將磷酸釩鋰(Li3V2(PO4)3:以下稱(chēng)LVP)與高容量NCA(Li(Ni-Co-Al)O2)混合的LVP-NCA類(lèi)正極材料注11)。
注11) 富士重工業(yè)以“采用磷酸釩鋰的高容量高功率電池的開(kāi)發(fā)”為題發(fā)表了演講[演講序號(hào):3B16]
富士重工業(yè)采用將LVP與NCA按重量比3:7混合的正極試制了17Ah的層壓型單元(圖16)。能量密度為190Wh/kg(373Wh/L),平均電壓為3.64V,與僅采用NCA正極試制的單元具備基本相同的性能,同時(shí)大幅提高了輸出特性。SOC較低時(shí)的輸出特性尤為出色。富士重工業(yè)表示,通過(guò)改變混合比例,有望達(dá)到期望的輸出特性。
圖16:混合LVP提高NCA類(lèi)正極材料的特性
富士重工業(yè)通過(guò)在NCA類(lèi)正極材料中混合LVP,提高了輸入輸出特性。
充放電循環(huán)特性方面,循環(huán)5000次后的容量維持率為L(zhǎng)VP-NCA類(lèi)70%,NCA類(lèi)63%,通過(guò)混合LVP提高了壽命特性。
通過(guò)硅錫復(fù)合化尋找出路
鋰離子充電電池的負(fù)極材料方面,采用石墨的現(xiàn)行鋰離子充電電池的能量密度已逐漸接近極限。因此,今后計(jì)劃混合硅和錫等合金類(lèi)負(fù)極材料來(lái)提高能量密度,計(jì)劃2020年實(shí)現(xiàn)1000mAh/g以上的能量密度(圖17)。此外,將安全性高、有望實(shí)現(xiàn)高容量化的鐵氧化物用作負(fù)極材料的動(dòng)向也越來(lái)越多。
圖17:掌握高容量化關(guān)鍵的負(fù)極材料
負(fù)極材料有很多有望實(shí)現(xiàn)高容量化的材料候補(bǔ)。課題在于,因材料的膨脹和收縮難以獲得充分的循環(huán)壽命。在本屆電池研討會(huì)上,硅合金負(fù)極、錫合金負(fù)極和鐵氧化物等相關(guān)的發(fā)表受到關(guān)注。
在本屆電池研討會(huì)上,豐田、本田技術(shù)研究所、索尼、古河電池、三德及五鈴精工硝子等分別就硅和錫的合金類(lèi)負(fù)極發(fā)表了演講。
在合金類(lèi)材料中,伴隨充放電而產(chǎn)生的膨脹和收縮會(huì)造成體積變化,從而導(dǎo)致電極結(jié)構(gòu)崩塌,因此長(zhǎng)壽命化是一大課題。鳥(niǎo)取大學(xué)研究生院 坂口研究室與三德的研發(fā)小組提出了使循環(huán)特性出色的稀土類(lèi)金屬硅化物與硅復(fù)合化的方法(圖18)注12)。該復(fù)合材料“在熱力學(xué)方面非常穩(wěn)定,即使反復(fù)進(jìn)行充放電也能抑制電極結(jié)構(gòu)崩塌”(鳥(niǎo)取大學(xué)研究生院)。
圖18:充放電1000次后仍維持了690mAh/g的放電容量
鳥(niǎo)取大學(xué)研究生院與三德推進(jìn)了將稀土類(lèi)硅化物與硅的復(fù)合材料用于鋰離子充電電池負(fù)極的研究(a)。共有多項(xiàng)候補(bǔ),其中作為稀土類(lèi)金屬,采用Gd(釓)的Gd-Si/Si負(fù)極的初始放電容量高達(dá)1870mAh/g,循環(huán)充放電1000次后依然維持了690mAh/g的容量(b)。
注12) 鳥(niǎo)取大學(xué)研究生院與三德以“采用各種稀土類(lèi)硅化物和硅的鋰充電電池負(fù)極的創(chuàng)制”為題發(fā)表了演講[演講序號(hào):1D20]。除此之外,還有其他相關(guān)的發(fā)表[演講序號(hào):1D19、1D21、1D22]。
在稀土類(lèi)金屬中,把采用釓(Gd)的復(fù)合材料Gd-Si/Si用作負(fù)極的電池,其容量和充放電循環(huán)特性尤其高。在基于杯形細(xì)胞(Beaker Cell)的試驗(yàn)中,初始充放電容量創(chuàng)下了1870mAh/g的極高值。充放電1000次后也維持了690mAh/g的容量。該研發(fā)小組已經(jīng)試制出以Gd-Si/Si為負(fù)極,以L(fǎng)iMn2O4為正極的電池。初始充放電容量為1230mAh/g,循環(huán)100次后為860mAh/g。
五鈴精工硝子推進(jìn)了將錫銻(Sn-Sb)硫化物玻璃與硅的復(fù)合體用作鋰離子充電電池負(fù)極材料的開(kāi)發(fā)。“2012年已開(kāi)始少量樣品供貨”(該公司)。在此前的研究中已經(jīng)證實(shí),該復(fù)合材料能以1000~1400mAh/g的容量實(shí)現(xiàn)穩(wěn)定的循環(huán)壽命。五鈴精工硝子此次與日本產(chǎn)業(yè)技術(shù)綜合研究所關(guān)西中心共同在該復(fù)合材料上纏繞正極材料LiFePO4和無(wú)紡布隔膜試制了電池注13)。電池容量為850mAh。
注13) 五鈴精工硝子與產(chǎn)業(yè)技術(shù)綜合研究所以“采用Sn-Sb類(lèi)硫化物玻璃負(fù)極的鋰離子充電電池”為題發(fā)表了演講[演講序號(hào):1D29]。
通過(guò)充放電試驗(yàn)確認(rèn),在-20~+60℃的大溫度范圍內(nèi)可以作為充電電池正常使用(圖19)。在溫度為60℃、充放電率為3C時(shí),比容量為128mAh/g。循環(huán)特性出色,反復(fù)充放電150次仍維持了99%的容量。
圖19:采用Sn-Sb硫化物玻璃類(lèi)負(fù)極充放電1000次后仍維持了690mAh/g的放電容量
五鈴精工硝子開(kāi)發(fā)出了經(jīng)過(guò)150次循環(huán)充放電后實(shí)現(xiàn)99%的容量維持率的鋰離子充電電池(a)。可在-20~+60℃的大溫度范圍內(nèi)使用(b)。特點(diǎn)是負(fù)極材料采用了Sn-Sb硫化物玻璃,還可用于鈉離子充電電池(c)。
利用鐵氧化物實(shí)現(xiàn)高容量化
在汽車(chē)和定置用途中,目前較受關(guān)注的負(fù)極材料為鈦酸鋰(Li4T5O12:以下稱(chēng)LTO)注14)。LTO的鋰電位高達(dá)1.55V左右,鋰不會(huì)析出,因此穩(wěn)定性高、壽命長(zhǎng)。不過(guò),LTO存在的課題是比容量只有175mAh/g左右。
注14) 鈴木2012年9月上市的輕型汽車(chē)“Wagon R”的再生用蓄電池采用了東芝的LTO負(fù)極鋰離子充電電池“SCiB”。
因此,可取代LTO的高容量氧化物類(lèi)負(fù)極的研究變得活躍。在本屆電池研討會(huì)上,日立制作所和三重大學(xué)的研發(fā)小組就可實(shí)現(xiàn)1000mAh/g比容量的鐵氧化物發(fā)表了論文(圖20)注15)。
圖20:具備高容量的鋰摻雜鐵氧化物負(fù)極
日立制作所和三重大學(xué)就具備高容量的鋰摻雜鐵氧化物負(fù)極進(jìn)行了發(fā)表。實(shí)現(xiàn)了1000mAh/g以上的比容量。
注15) 日立制作所和三重大學(xué)以“鋰離子電池用氧化物負(fù)極材料的開(kāi)發(fā)”[演講序號(hào):2D02]為題發(fā)表了演講。
該研發(fā)小組發(fā)表的鐵氧化物的特點(diǎn)是,通過(guò)進(jìn)行水熱處理,可預(yù)先在鐵氧化物中摻雜鋰。由此能抑制初始充放電的不可逆容量。具體而言,將γ-Fe2O3和水氧化鋰溶液在200℃下進(jìn)行了10小時(shí)的水熱處理。結(jié)果確認(rèn)生成了LiFeO2和LiFe5O8。
初始充放電的結(jié)果顯示,進(jìn)行過(guò)水熱處理的鐵氧化物的初始放電容量升高,可比γ-Fe2O3降低不可逆容量。
評(píng)論