衡阳派盒市场营销有限公司

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>構(gòu)建光子神經(jīng)網(wǎng)絡(luò)并實(shí)現(xiàn)光電融合的計(jì)算處理器

構(gòu)建光子神經(jīng)網(wǎng)絡(luò)并實(shí)現(xiàn)光電融合的計(jì)算處理器

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2015-08-19 08:54:231936

首枚光子神經(jīng)形態(tài)芯片問世 有望開啟光子計(jì)算產(chǎn)業(yè)

據(jù)科技日?qǐng)?bào)11月21日消息,普林斯頓大學(xué)亞力山大·泰特團(tuán)隊(duì)的新成果是利用光子解決了神經(jīng)網(wǎng)絡(luò)電路速度受限這一難題。神經(jīng)網(wǎng)絡(luò)電路已在計(jì)算領(lǐng)域掀起風(fēng)暴??茖W(xué)家希望制造出更強(qiáng)大的神經(jīng)網(wǎng)絡(luò)電路,其關(guān)鍵在于
2016-11-23 14:57:17744

光子賦能量子計(jì)算和光神經(jīng)網(wǎng)絡(luò),助飛計(jì)算新時(shí)代

本文將著重介紹基于光子學(xué)的新型計(jì)算架構(gòu),包括光神經(jīng)網(wǎng)絡(luò)和量子信息處理。為了滿足新應(yīng)用不斷變化的需求,Photonics-SOI 優(yōu)化襯底的設(shè)計(jì)以及 Smart-Cut? 工藝不斷演進(jìn),以解決大批量制造、良率、成本效益等問題。
2022-03-22 10:26:181678

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

使用最為有利的系統(tǒng)。訓(xùn)練往往在線下通過基于 CPU 的系統(tǒng)、圖形處理器 (GPU) 或現(xiàn)場(chǎng)可編程門陣列 (FPGA) 來完成。由于計(jì)算功能強(qiáng)大且設(shè)計(jì)人員對(duì)其很熟悉,這些是用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的最為理想
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)資料全集

CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25

AI知識(shí)科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)的發(fā)展可以追溯到二戰(zhàn)時(shí)期,那時(shí)候先輩們正想著如何用人類的方式去存儲(chǔ)和處理信息,于是他們開始構(gòu)建計(jì)算系統(tǒng)。由于當(dāng)時(shí)計(jì)算機(jī)機(jī)器和技術(shù)的發(fā)展限制,這一技術(shù)并沒有得到廣泛的關(guān)注和應(yīng)用。幾十年來
2018-06-05 10:11:50

ETPU-Z2全可編程神經(jīng)網(wǎng)絡(luò)開發(fā)平臺(tái)

處理器的形式存在,專用于基于某個(gè)特定神經(jīng)網(wǎng)絡(luò)算法的特定應(yīng)用。在這樣的ASIC系統(tǒng)中,EEP-TPU的應(yīng)用將按照專用ASIC系統(tǒng)的方式,將特定流程的任務(wù)以軟件+硬件結(jié)合的方式實(shí)現(xiàn)。在特定的嵌入式系統(tǒng)中
2020-05-18 17:13:24

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

labview BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21

《 AI加速架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀后感

《 AI加速架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀感 ? ?在本書的引言中也提到“一圖勝千言”,讀完第一章節(jié)后,對(duì)其進(jìn)行了一些歸納(如圖1),第一章對(duì)常見的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行了介紹,舉例了一些結(jié)構(gòu)
2023-09-11 20:34:01

【PYNQ-Z2申請(qǐng)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車

,并在屏幕上使用Qt綜合顯示小車實(shí)時(shí)圖像與神經(jīng)網(wǎng)絡(luò)控制實(shí)時(shí)狀態(tài)。PYNQ-Z2平臺(tái)搭載Xilinx Zynq7020芯片,擁有充足的可編程邏輯資源,嵌入了雙核Cortex-A9處理器硬核,符合作品進(jìn)行
2018-12-19 11:36:24

【PYNQ-Z2申請(qǐng)】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

項(xiàng)目名稱:基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速試用計(jì)劃:申請(qǐng)理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡(luò)的硬件加速,在PYNQ上實(shí)現(xiàn)圖像的快速處理項(xiàng)目計(jì)劃:1、在PC端實(shí)現(xiàn)Lnet網(wǎng)絡(luò)的訓(xùn)練
2018-12-19 11:37:22

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

前言前面我們通過notebook,完成了在PYNQ-Z2開發(fā)板上編寫運(yùn)行python程序。我們的最終目的是基于神經(jīng)網(wǎng)絡(luò),完成手寫的數(shù)字識(shí)別。在這之前,有必要講一下神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理。何為
2019-03-03 22:10:19

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車 - 項(xiàng)目規(guī)劃

的開源作品實(shí)在少之又少,使得基于神經(jīng)網(wǎng)絡(luò)的作品對(duì)于部分電子愛好者仍帶有一分神秘的光環(huán)。本作品依托的PYNQ-Z2開發(fā)板擁有充足的可編程邏輯資源,嵌入了雙核Cortex-A9處理器硬核,滿足小車視頻
2019-03-02 23:10:52

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

}或o koko_{k})的誤差神經(jīng)元偏倚的變化量:ΔΘ ΔΘ Delta Theta=學(xué)習(xí)步長(zhǎng)η ηeta × ×imes 乘以神經(jīng)元的誤差BP神經(jīng)網(wǎng)絡(luò)算法過程網(wǎng)絡(luò)的初始化:包括權(quán)重和偏倚的初始化計(jì)算
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)原理及下載

這個(gè)網(wǎng)絡(luò)輸入和相應(yīng)的輸出來“訓(xùn)練”這個(gè)網(wǎng)絡(luò),網(wǎng)絡(luò)根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點(diǎn)之間的權(quán)值來滿足輸入和輸出。這樣,當(dāng)訓(xùn)練結(jié)束后,我們給定一個(gè)輸入,網(wǎng)絡(luò)便會(huì)根據(jù)自己已調(diào)節(jié)好的權(quán)值計(jì)算出一個(gè)輸出。這就是神經(jīng)網(wǎng)絡(luò)的簡(jiǎn)單原理。  神經(jīng)網(wǎng)絡(luò)原理下載-免費(fèi)
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)在傳感數(shù)據(jù)融合中的應(yīng)用

人工神經(jīng)網(wǎng)絡(luò)在傳感數(shù)據(jù)融合中的應(yīng)用針對(duì)壓力傳感對(duì)溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對(duì)其進(jìn)行數(shù)據(jù)融合處理,消除溫度對(duì)壓力傳感的影響,大大提高了傳感的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

何謂神經(jīng)網(wǎng)絡(luò)處理指令?有什么作用?

何謂神經(jīng)網(wǎng)絡(luò)處理指令?有什么作用?Armv8.1-M核心實(shí)施選項(xiàng)包括哪些?
2021-06-29 09:07:44

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

分析了目前的特殊模型結(jié)構(gòu),最后總結(jié)討論了卷積神經(jīng)網(wǎng)絡(luò)在相關(guān)領(lǐng)域的應(yīng)用,對(duì)未來的研究方向進(jìn)行展望。卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN) 在計(jì)算機(jī)視覺[1-
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器實(shí)現(xiàn)關(guān)鍵詞識(shí)別

我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37

圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理的簡(jiǎn)要介紹

為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過程分為兩個(gè)步驟:圖像預(yù)處理神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對(duì)系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于Cortex-M處理器的高精度關(guān)鍵詞識(shí)別實(shí)現(xiàn)

我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2019-07-23 06:59:07

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于IDE構(gòu)建用于STM32微處理器的完整人工智能項(xiàng)目

本用戶手冊(cè)指導(dǎo)了基于 IDE 逐步構(gòu)建用于 STM32 微處理器的完整人工智能(AI)項(xiàng)目,自動(dòng)轉(zhuǎn)換預(yù)訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)(NN)集成所生成的優(yōu)化庫。本手冊(cè)還介紹了 X-CUBE-AI 擴(kuò)展包,該擴(kuò)展
2023-09-07 06:15:31

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)
2021-10-11 08:05:42

如何利用SoPC實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)速度控制

不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)?,F(xiàn)場(chǎng)可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制的硬件實(shí)現(xiàn)提供了新的載體。
2019-08-12 06:25:35

如何用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案?

某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27

如何移植一個(gè)CNN神經(jīng)網(wǎng)絡(luò)到FPGA中?

訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個(gè)不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

(Digital Signal Processor)相比,現(xiàn)場(chǎng)可編程門陣列(Field Programma-ble Gate Array,F(xiàn)PGA)在神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)上更具優(yōu)勢(shì)。DSP處理器處理時(shí)采用指令順序執(zhí)行
2019-08-08 06:11:30

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理(1.浙江工業(yè)大學(xué)建筑工程學(xué)院, 杭州 310014; 2.鎮(zhèn)江水工業(yè)公司排水管理處,鎮(zhèn)江 212003)摘要:針對(duì)復(fù)雜的非線性污水生物處理過程,開發(fā)了徑向基函數(shù)的人
2009-08-08 09:56:00

怎么解決人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題

本文提出了一個(gè)基于FPGA 的信息處理的實(shí)例:一個(gè)簡(jiǎn)單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),考慮了模塊間數(shù)據(jù)傳輸信號(hào)同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理器的通信方案?

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

恩智浦eIQ? Neutron神經(jīng)處理單元

可通過多種方式,其中最有效的是將專門構(gòu)建的專用神經(jīng)處理單元(NPU),或稱為機(jī)器學(xué)習(xí)加速(MLA)或深度學(xué)習(xí)加速(DLA)集成到器件中,以補(bǔ)充CPU計(jì)算核心。恩智浦提供廣泛的產(chǎn)品組合,從傳統(tǒng)
2023-02-17 13:51:16

有關(guān)脈沖神經(jīng)網(wǎng)絡(luò)的基本知識(shí)

譯者|VincentLee來源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計(jì)算單...
2021-07-26 06:23:59

求利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序

誰有利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序啊(我用的版本是8.6的 )
2012-11-26 14:54:59

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

求助大神關(guān)于神經(jīng)網(wǎng)絡(luò)的問題

求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44

求基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程

求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程,最好有程序哈,謝謝?。?/div>
2012-12-10 14:55:50

用FPGA去實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項(xiàng)目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在
2022-10-24 16:10:50

簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36

脈沖耦合神經(jīng)網(wǎng)絡(luò)在FPGA上的實(shí)現(xiàn)誰會(huì)?

脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實(shí)現(xiàn)實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

視覺任務(wù)中,取得了巨大成功。然而,由于存儲(chǔ)空間和功耗的限制,神經(jīng)網(wǎng)絡(luò)模型在嵌入式設(shè)備上的存儲(chǔ)與計(jì)算仍然是一個(gè)巨大的挑戰(zhàn)。前面幾篇介紹了如何在嵌入式AI芯片上部署神經(jīng)網(wǎng)絡(luò):【嵌入式AI開發(fā)】篇五|實(shí)戰(zhàn)篇一:STM32cubeIDE上部署神經(jīng)網(wǎng)絡(luò)之pytorch搭建指紋識(shí)別模型.onnx...
2021-12-14 07:35:25

邊緣計(jì)算的相關(guān)資料推薦

面向邊緣計(jì)算的嵌入式FPGA平臺(tái)卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建 通過設(shè)計(jì)卷積神經(jīng)網(wǎng)絡(luò)函數(shù)中的網(wǎng)絡(luò)層間可復(fù)用的加速核心以減少硬件資源實(shí)現(xiàn)性能優(yōu)化卷積神經(jīng)網(wǎng)絡(luò)硬件。邊緣計(jì)算:克服云計(jì)算固有的問題,將應(yīng)用、數(shù)據(jù)
2021-12-23 07:26:12

遞歸神經(jīng)網(wǎng)絡(luò)(RNN)

文本中的一個(gè)詞。RNN也是一種包含某特殊層的神經(jīng)網(wǎng)絡(luò),它并不是一次處理所有數(shù)據(jù)而是通過循環(huán)來處理數(shù)據(jù)。由于RNN可以按順序處理數(shù)據(jù),因此可以使用不同長(zhǎng)度的向量生成不同長(zhǎng)度的輸出。圖6.3提供了一些
2022-07-20 09:27:59

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時(shí)達(dá)到最高的精度
2022-03-17 19:15:13

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計(jì)算作為獲取長(zhǎng)時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長(zhǎng)時(shí)記憶(long-range dependency)至關(guān)重要。對(duì)于序列數(shù)據(jù)(例如語音、語言),遞歸運(yùn)算
2018-11-12 14:52:50

隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)在目標(biāo)狀態(tài)信息融合中的應(yīng)用

提出一種新的基于隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)的多傳感器狀態(tài)信息融合方法, 研究和比較了基于單值模糊神經(jīng)網(wǎng)絡(luò)和基于隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)的雷達(dá)與紅外傳感器狀態(tài)信息融合。仿真結(jié)果表明,
2009-07-09 14:42:1610

寒武紀(jì)深度神經(jīng)網(wǎng)絡(luò)處理器是什么

第三屆世界互聯(lián)網(wǎng)大會(huì)于2016年11月16日在浙江烏鎮(zhèn)召開,并舉辦了領(lǐng)先科技成果發(fā)布會(huì)。其中中國(guó)最引人注目的就是中國(guó)科學(xué)院計(jì)算技術(shù)研究所發(fā)布了寒武紀(jì)深度神經(jīng)網(wǎng)絡(luò)處理器,聽起來很高大上,那么到底這顆
2017-09-20 13:22:562

神經(jīng)網(wǎng)絡(luò)從原理到實(shí)現(xiàn)

神經(jīng)網(wǎng)絡(luò)(neural network,縮寫NN)或類神經(jīng)網(wǎng)絡(luò),是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人
2018-09-18 22:40:01517

實(shí)現(xiàn)光電融合,中國(guó)移動(dòng)提出四大目標(biāo)

光電融合功能,將電層的波長(zhǎng)轉(zhuǎn)換、再生及光層調(diào)度進(jìn)行融合。一張網(wǎng)絡(luò)中網(wǎng)節(jié)點(diǎn)數(shù)量、覆蓋范圍和波長(zhǎng)數(shù)量需要達(dá)到一種平衡,為了實(shí)現(xiàn)這個(gè)平衡,需要具備光電融合技術(shù)。
2020-08-28 09:07:512438

清華大學(xué)團(tuán)隊(duì)提出并構(gòu)建光電智能衍射計(jì)算處理器

傳統(tǒng)電子計(jì)算方式已經(jīng)越來越難以滿足未來人工智能對(duì)處理器計(jì)算性能的需求。近年來,基于光計(jì)算高速、低功耗、高并行的顛覆性優(yōu)勢(shì),通過光電融合的方式構(gòu)建光學(xué)神經(jīng)網(wǎng)絡(luò)與智能光電計(jì)算處理器已經(jīng)成為國(guó)際信息技術(shù)前沿的熱點(diǎn)
2021-04-18 09:22:381605

基于進(jìn)化計(jì)算神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與實(shí)現(xiàn)

基于進(jìn)化計(jì)算神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與實(shí)現(xiàn)說明。
2021-06-01 09:25:114

基于光子神經(jīng)網(wǎng)絡(luò)的超高算力密度硅基集成光子處理器

高算力密度集成光子處理器 此前,人工智能(AI)技術(shù)已在數(shù)據(jù)密集型計(jì)算任務(wù)中得到廣泛應(yīng)用。在后摩爾時(shí)代,為滿足AI算力和能耗的巨大需求,光子神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。
2023-02-06 11:11:33378

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)是模擬人體生物神經(jīng)元原理構(gòu)建的,比較基礎(chǔ)的有M-P模型,它按照生物 神經(jīng)元的結(jié)構(gòu)和工作原理構(gòu)造出來的一個(gè)抽象和簡(jiǎn)化的模型。
2023-02-24 16:06:521080

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理1

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:05:34451

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理2

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:13377

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理3

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:18467

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理4

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:21443

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:453487

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:182941

構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法 神經(jīng)網(wǎng)絡(luò)模型的常用算法介紹

神經(jīng)網(wǎng)絡(luò)模型是一種通過模擬生物神經(jīng)元間相互作用的方式實(shí)現(xiàn)信息處理和學(xué)習(xí)的計(jì)算機(jī)模型。它能夠?qū)斎霐?shù)據(jù)進(jìn)行分類、回歸、預(yù)測(cè)和聚類等任務(wù),已經(jīng)廣泛應(yīng)用于計(jì)算機(jī)視覺、自然語言處理、語音處理等領(lǐng)域。下面將就神經(jīng)網(wǎng)絡(luò)模型的概念和工作原理,構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法以及神經(jīng)網(wǎng)絡(luò)模型算法介紹進(jìn)行詳細(xì)探討。
2023-08-28 18:25:27582

已全部加載完成

永利博娱乐| 大发888亚洲赌场| 百家乐赢家公式| AG百家乐官网大转轮| 仁化县| 金利娱乐城代理| 威尼斯人娱乐平台| 大世界百家乐娱乐| 百家乐官网免费送现金| 澳门百家乐官网有没有假| 彩票| 昭苏县| 皇博| 大发888网站是多少呢| 柬埔寨百家乐官网的玩法技巧和规则| 太阳城百家乐官网看牌| 百家乐官网怎打能赢| 太子娱乐城官网| 申博娱乐城开户| 澳门百家乐网40125| 宝博百家乐娱乐城| 百家乐的代理办法| 百家乐官网是娱乐场| 贵宾百家乐官网的玩法技巧和规则 | 百家乐网址哪里有| 百家乐官网发牌| 金界百家乐官网的玩法技巧和规则| 至尊百家乐官网娱乐平台| 抚松县| 珠海市| 麻城市| 凤阳县| 晋城| 永兴县| 真人网上娱乐城| 爱博彩论坛| 皇廷娱乐| 豪门网上娱乐| 淘金盈赌场有假吗| 图木舒克市| 休宁县|