資料介紹
數字微鏡器件(DMD)作為空間光調制器可克服傳統光譜分析儀架構缺點
在近紅外(NIR)光譜分析領域中,一個將便攜性與高性能實驗室系統的準確性和功能性組合在一起的系統將極大地改進實時分析。由一塊電池供電的小型手持式光譜分析儀的開發可以實現對工業過程、或食品成熟度的評估在現場進行更有效的監控。
大多數色散光譜分析測量在一開始采用的都是同樣的方式。被分析的光通過一個小狹縫;這個狹縫與一個光柵組合在一起,共同控制這個儀器的分辨率。這個衍射光柵專門設計用于以已知的角度反射不同波長的光。這個波長的空間分離使得其它系統可以根據波長來測量光強度。
傳統光譜測量架構的主要不同之處在于散射光的測量方式。兩種常見的方法有(1)與散射光物理掃描組合在一起的單元素(或單點)探測器,以及(2)將散射光在一組探測器上成像。
使用MEMS技術的方法
使用具有一個單點探測器、基于光學微機電系統 (MEMS) 陣列技術的全新方法可以克服傳統光譜分析方法中的很多限制。在基于單點探測器的系統中,一個固態光學MEMS陣列用簡單、空間波長濾波器取代了傳統的電動光柵。這個方法可以在消除精細控制電動系統中問題的同時,利用單點探測器的性能優勢。近些年,此類系統已經投入生產,其中,掃描光柵被取代,并且MEMS器件過濾每一個特定波長進入單點探測器。這個方法在實現更加小巧和穩健耐用光譜分析儀的同時,也表現出很高的性能。
相對于線性陣列探測器架構,光學MEMS陣列的使用具有數個優勢。首先,可以使用更大的單元素探測器,以提高采光量,并極大降低系統成本和復雜度,這對于紅外系統更是如此。此外,由于不使用陣列探測器,像素到像素噪聲被消除了,而這可以極大地提升信噪比(SNR)性能。SNR性能的提高可以在更短時間內獲得更加準確的測量結果。
在一個使用MEMS技術的光譜分析系統中,衍射光柵和聚焦元件的功能與之前一樣,但來自聚焦元件的光在MEMS陣列上成像。要選擇一個用于分析的波長,一個特定的光譜響應波段被激活,這樣的話,就可以將光引入到單點探測器中進行采集和測量。
如果MEMS器件高度可靠,能夠生成可預計的濾波器響應,并且在不同的時間和溫度下保持恒定,那么這些優勢就可以實現。
將一個DLP? 芯片或數字微鏡器件(DMD)用作一個空間光調制器,并且在一個光譜分析儀系統架構中將其用作MEMS器件的話,可以克服數個難題。首先,使用一組鋁制微鏡來接通和關閉進入單點探測器的光,這在廣泛的波長范圍內是光學有效的。其次,數字微鏡的打開和關閉狀態由機械止動裝置和互補金屬氧化物半導體(CMOS)靜止隨機訪問存儲器(SRAM)單元的鎖存電路控制,從而提供固定的電壓鏡控制。這個固定電壓、靜止控制意味著這個系統不需要機械掃描或模擬控制環路,并且能夠簡化校準。它還使得光譜分析儀設計更能免受溫度、老化或振動等錯誤源的影響。
DMD的可編程屬性具有很多優勢。其中某項優勢會在進行光譜分析儀架構設計時顯現——如果以被用作濾波器的微鏡的尋址列為基礎。由于DMD分辨率通常高于所需的光譜,DMD區域會出現欠填充的情況,并且會對光譜過采樣。這使得波長選擇完全可編程,并且在光引擎出現極端機械位移的情況下,將額外微鏡用作重新校準列。
此外, DMD是一個二維可編程陣列,這為用戶提供高度的靈活性。通過選擇不同的列數量,可以調節分辨率和吞吐量。掃描時間可動態調整,如此一來,用戶可對所需波長進行更長時間、更加詳細的檢查,從而更好地使用儀器時間和功能。此外,相對于固定濾波器器具1,諸如采用的Hadamard圖形等高級孔徑編碼技術,可實現高度的靈活性和更高性能。
總之,與目前的光譜分析系統相比,使用DMD的光譜分析器件可實現更高分辨率、更高靈活性、更加穩健耐用、更小的外形尺寸和更低的成本,從而使得它們對于廣泛的商業和工業應用更有吸引力。
單探測器架構消除噪聲
目前基于線性陣列的光譜分析儀主要受到兩個因素的限制。首先,探測器的波長選擇受到像素孔徑的限制。探測器的尺寸決定了采集到的光量,從而影響SNR。諸如Hamamatsu G9203-256的常見磷化砷鎵銦(InGaAs)256像素線性陣列的尺寸為50微米 x 500微米。相反地,一個數字微鏡陣列是一個完全可編程的矩陣,可以針對應用來配置列的數量和掃描技術。這可以將更大的信號呈現給通常與DMD一同使用的更大的1毫米或2毫米的單點探測器。將窄帶光過濾到一個線性陣列中——通常是50微米寬像素——也許會出現串擾的問題。像素到像素干擾會成為讀取過程中產生噪聲的主要原因。這些干擾可通過單探測器架構消除。此外, 通過利用1kHz至4kHz的數字微鏡掃描速度,單點探測器可以達到與平行多點采樣相類似的駐留時間。對于基于MEMS ——或基于DMD——的緊湊型光譜分析儀引擎,結果顯示SNR的范圍大于10000:1。
在近紅外(NIR)光譜分析領域中,一個將便攜性與高性能實驗室系統的準確性和功能性組合在一起的系統將極大地改進實時分析。由一塊電池供電的小型手持式光譜分析儀的開發可以實現對工業過程、或食品成熟度的評估在現場進行更有效的監控。
大多數色散光譜分析測量在一開始采用的都是同樣的方式。被分析的光通過一個小狹縫;這個狹縫與一個光柵組合在一起,共同控制這個儀器的分辨率。這個衍射光柵專門設計用于以已知的角度反射不同波長的光。這個波長的空間分離使得其它系統可以根據波長來測量光強度。
傳統光譜測量架構的主要不同之處在于散射光的測量方式。兩種常見的方法有(1)與散射光物理掃描組合在一起的單元素(或單點)探測器,以及(2)將散射光在一組探測器上成像。
使用MEMS技術的方法
使用具有一個單點探測器、基于光學微機電系統 (MEMS) 陣列技術的全新方法可以克服傳統光譜分析方法中的很多限制。在基于單點探測器的系統中,一個固態光學MEMS陣列用簡單、空間波長濾波器取代了傳統的電動光柵。這個方法可以在消除精細控制電動系統中問題的同時,利用單點探測器的性能優勢。近些年,此類系統已經投入生產,其中,掃描光柵被取代,并且MEMS器件過濾每一個特定波長進入單點探測器。這個方法在實現更加小巧和穩健耐用光譜分析儀的同時,也表現出很高的性能。
相對于線性陣列探測器架構,光學MEMS陣列的使用具有數個優勢。首先,可以使用更大的單元素探測器,以提高采光量,并極大降低系統成本和復雜度,這對于紅外系統更是如此。此外,由于不使用陣列探測器,像素到像素噪聲被消除了,而這可以極大地提升信噪比(SNR)性能。SNR性能的提高可以在更短時間內獲得更加準確的測量結果。
在一個使用MEMS技術的光譜分析系統中,衍射光柵和聚焦元件的功能與之前一樣,但來自聚焦元件的光在MEMS陣列上成像。要選擇一個用于分析的波長,一個特定的光譜響應波段被激活,這樣的話,就可以將光引入到單點探測器中進行采集和測量。
如果MEMS器件高度可靠,能夠生成可預計的濾波器響應,并且在不同的時間和溫度下保持恒定,那么這些優勢就可以實現。
將一個DLP? 芯片或數字微鏡器件(DMD)用作一個空間光調制器,并且在一個光譜分析儀系統架構中將其用作MEMS器件的話,可以克服數個難題。首先,使用一組鋁制微鏡來接通和關閉進入單點探測器的光,這在廣泛的波長范圍內是光學有效的。其次,數字微鏡的打開和關閉狀態由機械止動裝置和互補金屬氧化物半導體(CMOS)靜止隨機訪問存儲器(SRAM)單元的鎖存電路控制,從而提供固定的電壓鏡控制。這個固定電壓、靜止控制意味著這個系統不需要機械掃描或模擬控制環路,并且能夠簡化校準。它還使得光譜分析儀設計更能免受溫度、老化或振動等錯誤源的影響。
DMD的可編程屬性具有很多優勢。其中某項優勢會在進行光譜分析儀架構設計時顯現——如果以被用作濾波器的微鏡的尋址列為基礎。由于DMD分辨率通常高于所需的光譜,DMD區域會出現欠填充的情況,并且會對光譜過采樣。這使得波長選擇完全可編程,并且在光引擎出現極端機械位移的情況下,將額外微鏡用作重新校準列。
此外, DMD是一個二維可編程陣列,這為用戶提供高度的靈活性。通過選擇不同的列數量,可以調節分辨率和吞吐量。掃描時間可動態調整,如此一來,用戶可對所需波長進行更長時間、更加詳細的檢查,從而更好地使用儀器時間和功能。此外,相對于固定濾波器器具1,諸如采用的Hadamard圖形等高級孔徑編碼技術,可實現高度的靈活性和更高性能。
總之,與目前的光譜分析系統相比,使用DMD的光譜分析器件可實現更高分辨率、更高靈活性、更加穩健耐用、更小的外形尺寸和更低的成本,從而使得它們對于廣泛的商業和工業應用更有吸引力。
單探測器架構消除噪聲
目前基于線性陣列的光譜分析儀主要受到兩個因素的限制。首先,探測器的波長選擇受到像素孔徑的限制。探測器的尺寸決定了采集到的光量,從而影響SNR。諸如Hamamatsu G9203-256的常見磷化砷鎵銦(InGaAs)256像素線性陣列的尺寸為50微米 x 500微米。相反地,一個數字微鏡陣列是一個完全可編程的矩陣,可以針對應用來配置列的數量和掃描技術。這可以將更大的信號呈現給通常與DMD一同使用的更大的1毫米或2毫米的單點探測器。將窄帶光過濾到一個線性陣列中——通常是50微米寬像素——也許會出現串擾的問題。像素到像素干擾會成為讀取過程中產生噪聲的主要原因。這些干擾可通過單探測器架構消除。此外, 通過利用1kHz至4kHz的數字微鏡掃描速度,單點探測器可以達到與平行多點采樣相類似的駐留時間。對于基于MEMS ——或基于DMD——的緊湊型光譜分析儀引擎,結果顯示SNR的范圍大于10000:1。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- AQ6331便捷式光譜分析儀應用介紹 2次下載
- AQ6317光譜分析儀應用介紹 1次下載
- 安捷倫光譜分析儀86140B應用介紹 0次下載
- 二維微機電陣列為移動光譜分析儀打下基礎
- 光譜分析儀STM32F103設計案例
- AQ6317B/C橫河Yokogawa臺式光譜分析儀操作手冊
- 手持式光譜分析儀MS2711B使用手冊 4次下載
- 手持近紅外(NIR)光譜分析儀架構中的創新資料下載
- MEMS技術與移動光譜分析儀資料下載
- 二維微機電陣列為移動光譜分析儀打下基礎 0次下載
- OSA光譜分析儀原理及操作 5次下載
- 基于FPGA便攜式光譜分析儀設計_彭馨儀 4次下載
- 光譜檢測原理及應用(光譜學與光譜分析)
- 基于DSP的近紅外光譜分析儀
- 激光二極管光譜分析儀
- 光譜分析儀測金屬元素怎么看 1870次閱讀
- 信號分析儀與頻譜分析儀的區別 2522次閱讀
- 頻譜分析儀怎么測量頻率 1539次閱讀
- 掃頻頻譜分析儀與實時頻譜分析儀的區別 2085次閱讀
- 10波段LED光譜分析儀的完整組裝指南 3155次閱讀
- 如何選擇頻譜分析儀和維修頻譜分析儀的故障分析 4306次閱讀
- 手持式光譜分析儀怎么使用 1.2w次閱讀
- 基于DWDM技術的最簡單光譜分析儀裝置 1778次閱讀
- 如何在光譜分析行業中實現創新 1021次閱讀
- 簡介AT5010頻譜分析儀 3464次閱讀
- 淺談二維微機電(MEMS)陣列對移動光譜分析儀的影響 1656次閱讀
- 光譜分析儀常規參數的測量方法(AQ6370光譜分析儀為例) 1w次閱讀
- 影響光譜分析儀主要因素 6524次閱讀
- 光譜分析儀有什么用途_光譜分析儀的工作原理 2.6w次閱讀
- 光譜分析儀指標參數及操作方法 1.9w次閱讀
下載排行
本周
- 1AN-1267: 使用ADSP-CM408F ADC控制器的電機控制反饋采樣時序
- 1.41MB | 5次下載 | 免費
- 2AN158 GD32VW553 Wi-Fi開發指南
- 1.51MB | 2次下載 | 免費
- 3嵌入式軟件開發符合ISO 26262 功能安全標準
- 1.61 MB | 1次下載 | 免費
- 4AN148 GD32VW553射頻硬件開發指南
- 2.07MB | 1次下載 | 免費
- 5AN-793: iCoupler隔離產品的ESD/閂鎖考慮因素
- 1.01MB | 次下載 | 免費
- 6AN-718: ADuC7020評估板參考指南
- 413.19KB | 次下載 | 免費
- 7EE-205:將代碼從ADSP-TS101S TigerSHARC處理器移植到ADSP-TS201S TigerSHARC處理器的注意事項
- 351.6KB | 次下載 | 免費
- 8HSW-TTY6754 二鍵觸摸感應IC_V1
- 1.15 MB | 次下載 | 免費
本月
- 1ADI高性能電源管理解決方案
- 2.43 MB | 451次下載 | 免費
- 2免費開源CC3D飛控資料(電路圖&PCB源文件、BOM、
- 5.67 MB | 138次下載 | 1 積分
- 3基于STM32單片機智能手環心率計步器體溫顯示設計
- 0.10 MB | 130次下載 | 免費
- 4使用單片機實現七人表決器的程序和仿真資料免費下載
- 2.96 MB | 44次下載 | 免費
- 5美的電磁爐維修手冊大全
- 1.56 MB | 24次下載 | 5 積分
- 6如何正確測試電源的紋波
- 0.36 MB | 19次下載 | 免費
- 7感應筆電路圖
- 0.06 MB | 10次下載 | 免費
- 8萬用表UT58A原理圖
- 0.09 MB | 9次下載 | 5 積分
總榜
- 1matlab軟件下載入口
- 未知 | 935121次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
- 1.48MB | 420062次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233088次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191367次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183335次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73810次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評論
查看更多