衡阳派盒市场营销有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器學習在抑郁癥領域的應用

我快閉嘴 ? 來源:讀芯術 ? 作者:讀芯術 ? 2020-08-31 14:45 ? 次閱讀

機器學習這一話題早已遠遠超出了它的起源——計算機科學,滲透到了眾多的公共和私營行業以及各種不同的學術學科。盡管機器學習技術和人工智能AI)這兩個術語經常可以互換使用,但其實前者通常被認為是更廣泛的人工智能(AI)領域的一個子集。

醫療保健業就是嘗試將運用機器學習技術的領域之一。目前,醫療行業中應用最廣泛的人工智能技術就是機器學習,它在改善患者身體健康以及心理健康等方面都有所涉足。

醫療保健行業內機器學習應用的目標一般是增強臨床理解與改善患者護理。具體來說,越來越多的研究都將重點放在使用機器學習來改善患者的篩查、診斷、臨床決策和特定治療結果上。

相較于機器學習在身體健康領域的應用來說,它在心理健康領域的應用仍比較落后。不過我們很開心能看到,近年來有關機器學習改善人們心理健康方面的研究數量增長十分迅速。

心理健康是一個龐大的產業,這一領域的機器學習研究已經被應用到了大量的課題,包括藥物治療、臨床診斷、心理治療結果,它甚至可以預測嚴重精神疾病的發生。更具體地說,上述幾個方面機器學習在心理健康領域的應用往往聚焦于某一特定的診斷群體,有時甚至會細化到該心理疾病的某一特定治療方式。

目前機器學習研究中最普遍的診斷群體也是心理健康疾病中最普遍的病癥——抑郁癥。據估計,僅在美國,2017年就有超過1700萬成年人至少有過一次嚴重的抑郁癥發作經歷,這個數字占總人口的比例高達7%。

雖然機器學習在抑郁癥中的應用研究并不是什么新鮮事,但其實,這方面的研究最近才剛開始獲得重大進展。

對所有機器學習在抑郁癥中的應用相關論文進行文獻分析后發現,第一篇相關論文發表于1993年。然而,直到1999年第二篇論文才被發表出來,此后每年都有穩定而緩慢的增長。最近,我們發現有關抑郁癥中機器學習的研究數量增速漸長,尤其是在過去的三年里,該數量的指數級增長尤為明顯。

鑒于這種發展趨勢可以肯定,我們仍然處于機器學習在抑郁癥方面應用研究的早期階段。這是一個充滿希望和令人興奮的研究領域,眾多方面的研究還有待展開。

當前應用

機器學習在抑郁癥診療中最突出、普遍的應用之一,就是其在藥物治療結果上的使用。事實上,檢索在抑郁癥診療中應用機器學習的期刊你就會發現,大部分的論文都將重點放在了精神藥物治療上。

其中一項著名的研究結合了之前9項抑郁癥研究的臨床數據,利用機器學習對相關癥狀進行聚類,隨后建立了一個機器學習模型來評估幾種主要抗抑郁藥物的療效。結果發現了三組癥狀,并發現研究涉及的幾種抗抑郁藥的療效存在統計學上的顯著差異。這表明醫生在給抑郁癥患者開藥時,應該根據患者所表現的具體癥狀對癥下藥。

認知、心理運動和情感測試等具體的心理評估工具也用來對結果進行分類。這些聚類被用來預測心理藥物治療后的反應,結果顯示,某些生物標記與有效抗抑郁藥物處方有關。

機器學習還應用于完成初始藥物治療方案后如何緩解抗抑郁癥癥狀這一課題的研究中,這是抑郁癥治療(用藥)中一個突出、反復出現的問題。

研究人員基于臨床評估數據來訓練機器學習模型,對三種不同抗抑郁藥物的作用(12周后)進行分類。結果表明,所分析的164個臨床特征能夠以60%的準確率預測三種藥物治療方案中的兩種方案對抑郁癥的緩解情況。

雖然在文獻中不常見,但機器學習也應用于抑郁癥除藥物治療外其他形式的治療結果。還有兩類抑郁癥治療數據也較為突出,即心理治療結果和影像學數據(如磁共振成像掃描)。

關于使用機器學習預測單相和雙相抑郁癥治療結果的首個薈萃分析評估了包括心理治療在內所有形式的抑郁癥治療數據。在對639項潛在研究進行初步抽象分析后,研究人員針對其中的75項研究進行了全文通覽,發現其中的26項研究是在利用機器學習算法來預測抑郁癥治療結果,符合本研究納入標準。

這些研究結果普遍支持機器學習在預測治療結果方面的有效性,綜合成功率為82%(P < .05),并表示使用多種數據類型的算法最為有效。當專門對MRI數據進行決策樹訓練,對初始抗抑郁治療8周后的緩解率進行分類時,發現MRI可以成功識別出一部分可能對初始抗抑郁治療無反應的患者。

機器學習在抑郁癥中的另一個比較有前景的應用涉及利用統計和建模來重新定義當前的癥狀和診斷,這一方面也更廣泛地應用于心理健康診斷中。這將是一項浩大的工程,很可能會遇到幾十年來的重大阻力,因為現狀是根據心理疾病診斷的理論類別來定義診斷分組,而它們并不總是與真實的心理疾病癥狀相吻合。

其潛在的好處包括改善疾病識別,從而開發更有效的干預措施和藥物,并隨之降低心理疾病的巨大經濟和社會成本。

考慮到對診斷分類進行全面改造可能會引起反作用,研究人員們提出了一種折中方法:將數據驅動的機器學習與理論驅動的模型相結合。具體來說,在這種方法中,理論模型通過減少輸入到機器學習算法中變量的數量來指導特征選擇過程。

實例表明,這種類型的方法可以改善其他醫學或神經疾病(如帕金森氏癥)的結果,因此將類似的方法應用于心理疾病的診療中可以改善診斷和治療結果。

盡管有關機器學習在抑郁癥診療方面應用的研究前景十分光明,但仍需考慮一些潛在的實踐和倫理問題。

一些實際問題限制了研究的實用性,比如從不同來源匯總數據的挑戰,以及在現實世界中對實際的心理疾病患者進行研究中常用的措施(例如核磁共振成像)的困難。

而倫理方面的問題包括:確保患者確實想知道自己是否身處風險之中,以及給某人貼上重度抑郁癥等心理疾病標簽所帶來的潛在不利影響和恥辱感。

對于心理健康服務的提供者和消費者來說,這是一個激動人心的時刻。隨著我們進入機器學習研究的美麗新世界,并逐漸了解如何將其最好地應用于我們的領域,抑郁癥新的診斷和治療方案即將出現。

目前這一領域的研究數量呈指數級增長,證明了機器學習對心理健康護理的潛在影響。但同時,我們看到的僅僅是機器學習全部可能性的一小部分而已。我們開始發現數十年來對于如何最好地治療心理疾病發生了轉變,甚至連診斷分組本身都受到了考驗。

具體到抑郁癥治療方面,我們看到機器學習成功應用于改善抗抑郁癥的效果,能降低緩解率,并對特定藥物有反應的群體更好地進行分類。多種不同來源的數據用于改善這些治療結果,包括心理和認知測試,以及MRI掃描和其他成像技術。

此外,機器學習技術正在應用于特定心理治療方式,以治療抑郁癥、提升治療效果,并確定對特定類型治療反應最好的患者和癥狀表現。

未來的研究很可能會沿著這條道路繼續下去,因為目前基礎的有效性和可靠性得到了檢驗,隨后可以在此基礎上進行改進。考慮到目前應用于心理治療的機器學習研究相對缺乏,并且鑒于治療是抑郁癥最常見、最成功的長期治療方法之一(與藥物治療齊名),筆者猜測,我們將開始看到機器學習研究在這一領域的激增。

藥物治療的結果更容易被概念化和測試,并且與歷史較長的醫學研究有更多的重疊,很可能會繼續受到超乎尋常的關注。

雖然存在一些問題,但機器學習在抑郁癥治療中的應用前景是十分廣闊的,相信AI能幫助人類走出“陰霾”。
責任編輯:tzh

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 醫療
    +關注

    關注

    8

    文章

    1835

    瀏覽量

    58948
  • AI
    AI
    +關注

    關注

    87

    文章

    31513

    瀏覽量

    270330
  • 人工智能
    +關注

    關注

    1796

    文章

    47666

    瀏覽量

    240281
  • 機器學習
    +關注

    關注

    66

    文章

    8438

    瀏覽量

    133082
收藏 人收藏

    評論

    相關推薦

    傳統機器學習方法和應用指導

    用于開發生物學數據的機器學習方法。盡管深度學習(一般指神經網絡算法)是一個強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度學習相比
    的頭像 發表于 12-30 09:16 ?385次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    聲智科技榮獲工信部“2024年先進計算賦能新質生產力典型應用案例”

    近日,工業和信息化部網站發布《2024年先進計算賦能新質生產力典型應用案例》公示信息,聲智科技“基于中醫大模型的抑郁癥AI自助診療平臺”作為“未來產業”領域唯一的AI大模型行業應用成功獲選。這項榮譽
    的頭像 發表于 12-28 14:57 ?278次閱讀

    聲智科技榮獲2024年先進計算賦能新質生產力典型應用案例

    隨著社會發展和生活節奏加快,心理健康問題逐漸成為現代社會的重要挑戰。抑郁癥、焦慮等情緒問題不僅影響個體的身心健康,也給社會帶來了巨大壓力。為應對這一問題,聲智科技與北京中醫藥大學東方醫院共同研發
    的頭像 發表于 12-26 11:52 ?249次閱讀

    zeta在機器學習中的應用 zeta的優缺點分析

    在探討ZETA在機器學習中的應用以及ZETA的優缺點時,需要明確的是,ZETA一詞在不同領域可能有不同的含義和應用。以下是根據不同領域的ZETA進行的分析: 一、ZETA在
    的頭像 發表于 12-20 09:11 ?359次閱讀

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統具有人的學習能力以便實現人工智能。因為沒有學習能力的系統很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發表于 11-16 01:07 ?511次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關系

    在人工智能領域機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發表于 11-15 09:19 ?599次閱讀

    具身智能與機器學習的關系

    具身智能(Embodied Intelligence)和機器學習(Machine Learning)是人工智能領域的兩個重要概念,它們之間存在著密切的關系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發表于 10-27 10:33 ?500次閱讀

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構建了時間序列分析的基礎知識,更巧妙地展示了機器學習如何在這一
    發表于 08-12 11:21

    【《時間序列與機器學習》閱讀體驗】+ 了解時間序列

    收到《時間序列與機器學習》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發燒友提供了一個讓我學習時間序列及應用的機會! 前言第一段描述了編寫背景: 由此可知,這是一本關于時間序列進行大數
    發表于 08-11 17:55

    人工智能、機器學習和深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning, DL)已成為
    的頭像 發表于 07-03 18:22 ?1430次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習和深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于
    的頭像 發表于 07-01 11:40 ?1540次閱讀

    機器學習的經典算法與應用

    關于數據機器學習就是喂入算法和數據,讓算法從數據中尋找一種相應的關系。Iris鳶尾花數據集是一個經典數據集,在統計學習機器學習
    的頭像 發表于 06-27 08:27 ?1729次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>的經典算法與應用

    機器學習怎么進入人工智能

    ,人工智能已成為一個熱門領域,涉及到多個行業和領域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關鍵是使用機器學習算法,這是
    的頭像 發表于 04-04 08:41 ?386次閱讀

    STM32編程疑難雜

    疑難雜
    的頭像 發表于 03-28 23:29 ?511次閱讀
    STM32編程疑難雜<b class='flag-5'>癥</b>

    用于實時壓力健康管理的可穿戴電化學織物傳感系統

    根據世界衛生組織的數據,近年來,抑郁癥被列為全球疾病的最大單一因素,估計有超過3億人患有抑郁癥,相當于世界人口的4.4%。
    的頭像 發表于 02-28 10:48 ?3308次閱讀
    用于實時壓力健康管理的可穿戴電化學織物傳感系統
    百家乐览| 网上的百家乐是假的吗| 大发888娱乐场大发888娱乐场 | 菲律宾百家乐官网排行| 威尼斯人娱乐城送宝马| 百家乐官网大眼仔用法| 在线百家乐纸牌游戏| 百家乐官网试玩账户| 百家乐游戏单机牌| 乐众国际| 真人百家乐玩法| 常山县| 菲律宾百家乐娱乐平台| 百家乐官网闲庄和| 大连百家乐食品| 评测百家乐官网博彩网站| 老k百家乐的玩法技巧和规则| 澳门百家乐官网职业| 淘金百家乐的玩法技巧和规则 | 克拉克百家乐官网的玩法技巧和规则 | qq百家乐网络平台| 神农架林区| 乐天堂百家乐娱乐场| 网络百家乐官网金海岸| 大发888娱乐场下载官方| 网页棋牌游戏| 百家乐平台哪个有在线支付呢| 百家乐官网视频桌球| 云鼎百家乐的玩法技巧和规则 | 赌百家乐咋赢对方| 玩百家乐官网去哪个平台好| 太阳城申博娱乐| 百家乐赌神| 利都百家乐官网国际赌场娱乐网规则| 大发888娱乐城下载新澳博| 下载百家乐棋牌大厅| 广州百家乐官网筹码| 大发888游戏平台103| 广州百家乐赌城| 百家乐电子作弊器| 百家乐类游戏网站|